130. On a Radical in a Semiring

By Kiyoshi ISÉKI and Yasue MIYANAGA (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1956)

In our previous paper [2], we considered the structure space of maximal ideals of a commutative semiring, and K. Iséki [3], one of the present authors, considered some relations of two structure spaces of it. In this paper, we shall consider a new kind of ideals of a semiring A with 0 (for the definition, see our paper [2]). A similar theory of an associative ring was treated by L. Fuchs [1].

An element a of A is said to be a *left zerodivisor* if there is a $b(\pm 0)$ of A such that ab=0. Let \mathfrak{A} be a two sided ideal, if every element of \mathfrak{A} is a left zerodivisor, then \mathfrak{A} is said to be *left* zerodivisor. In the sequel, by the term *ideal*, we mean a *two sided* ideal. An ideal is maximal left zerodivisor if there is no left zerodivisor ideal containing properly it. By Zorn's lemma, any left zerodivisor ideal is contained in a maximal left zerodivisor. Following L. Fuchs [1], we shall define a left zeroid ideal. If \mathfrak{A} is an ideal and $\mathfrak{A} + \mathfrak{B}$ for every left zerodivisor ideal \mathfrak{B} is a left zerodivisor, then \mathfrak{A} is said to be a *left zeroid* ideal. Therefore we have the following propositions which are proved easily.

Proposition 1. The sum of two left zeroid ideals is a left zeroid ideal.

Proposition 2. The join of all left zeroid ideals is also a left zeroid ideal.

The left zeroid ideal stated in Proposition 2 is said to be the *left radical* of A which is denoted by $\Re^{(t)}$. Similarly, we can define right zeroidvisor ideals, right zeroid ideals and the right radical $\Re^{(r)}$ of A. We shall define the radical \Re of A as $\Re^{(t)} \sim \Re^{(r)}$.

If every element of an ideal \mathfrak{A} is nilpotent, \mathfrak{A} is said to be a *nil* ideal. Then any nil ideal \mathfrak{R} is left zeroid and right zeroid.

Let b be an element of \mathfrak{N} , and let \mathfrak{N} be a left zerodivisor ideal. Then there is some positive integer n such that $b^n=0$. For an element a of \mathfrak{N} , $(a+b)^n$ is in \mathfrak{N} . Hence there is an element $c(\neq 0)$ such that $(a+b)^n c=0$. Let m be the least positive integer such that $(a+b)^m c=0$, then we have $(a+b)^{m-1}c \neq 0$. Hence $(a+b) \times (a+b)^{m-1}c = 0$ implies that a+b is a left zerodivisor. Hence \mathfrak{N} is a left zeroid ideal. Similarly we can prove that \mathfrak{N} is a right zeroid ideal.

Therefore the nil radical defined as the join of all nil ideals of A is contained in the radical \Re .

On the left radical $\Re^{(l)}$, we have the following

Theorem 1. The left radical $\Re^{(1)}$ is the intersection of all maximal left zerodivisor ideals \mathfrak{M}_{α} .

Proof. Let R be the intersection of all \mathfrak{M}_a , and let \mathfrak{A} be a left zerodivisor ideal of A, then there is a maximal left zerodivisor ideal \mathfrak{M}_a containing the ideal \mathfrak{A} . Since R is an ideal, $R + \mathfrak{A} \subseteq \mathfrak{M}_a$ and then $R + \mathfrak{A}$ is a left zerodivisor ideal. Hence R is contained in $\mathfrak{R}^{(1)}$. On the other hand, if there is a maximal left zerodivisor ideal \mathfrak{M}_a not containing $\mathfrak{R}^{(1)}, \mathfrak{R}^{(1)} + \mathfrak{M}$ is not a left zerodivisor ideal. Therefore $\mathfrak{R}^{(1)}$ is not left zeroid ideal. Hence we have $\mathfrak{R}^{(1)} \subset \mathfrak{M}_a$. The proof is complete.

Theorem 2. Any maximal left zerodivisor ideal is prime.

Since A is not necessarily commutative, a prime ideal means prime in McCoy sense [4]. Therefore we shall show that \mathfrak{ABCM} for two ideals $\mathfrak{A}, \mathfrak{B}$ of A implies \mathfrak{ACM} or \mathfrak{BCM} .

Proof. Let \mathfrak{M} be a maximal left zerodivisor ideal and $\mathfrak{W} \subset \mathfrak{M}$. Suppose that both two $\mathfrak{N}, \mathfrak{B}$ are not contained in \mathfrak{M} . By the maximality of $\mathfrak{M}, a+m_1$ and $b+m_2$, where $a \in \mathfrak{N}, b \in \mathfrak{B}$ and $m_1, m_2 \in \mathfrak{M}$, are not left zerodivisor. From $\mathfrak{W} \subset \mathfrak{M}, (a+m_1)(b+m_2)=ab+m(m \in \mathfrak{M})$ is contained in \mathfrak{M} , and there is an element $c(\neq 0)$ such that

 $(a+m_1)(b+m_2)c=(ab+m)c=0.$

Since $a+m_1$ is not left zerodivisor, we have $(b+m_2)c=0$. This shows that $b+m_2$ is a left zerodivisor, which is a contradiction. Therefore \mathfrak{ACM} or \mathfrak{BCM} .

From Theorem 1, we have

Theorem 3. The radical of A is the intersection of all maximal left zerodivisor and right zerodivisor ideals.

References

- [1] L. Fuchs: On a new type of radical, Acta Sci. Math., 16, 43-53 (1955).
- [2] K. Iséki and Y. Miyanaga: Notes on topological spaces. III. On space of maximal ideals of semiring, Proc. Japan Acad., 32, 325–328 (1956).
- [3] K. Iséki: Notes on topological spaces. V. On structure spaces of semiring, Proc. Japan Acad., 32, 426–429 (1956).
- [4] N. H. McCoy: Prime ideals in general rings, Am. Jour. Math., 71, 823-833 (1949).