125. On Closed Mappings

By Kiiti Morita

Department of Mathematics, Tokyo University of Education, Tokyo (Comm. by K. Kunugi, M.J.A., Oct. 12, 1956)

1. Introduction. In a previous paper [6], S. Hanai and the author have dealt with the problem: "Under what condition will the image of a metric space under a closed continuous mapping be metrizable?", and obtained the second part of the following theorem; this result, as M. Tsuda has called our attention, was also obtained by A. H. Stone and announced in [7].

Theorem 1. Let X be a metric space and let a topological space Y be the image of X under a closed continuous mapping f. Then Y is paracompact and perfectly normal. Furthermore, Y is metrizable if and only if the boundary $\mathfrak{B}f^{-1}(y)$ of the inverse image $f^{-1}(y)$ is compact for every point y of Y.

In the present note we shall deduce the first part of Theorem 1 as an immediate consequence of Theorem 3 below, and establish an analogous result for the case of locally compact spaces; namely we shall prove the following theorems.

- Theorem 2. Let X be a paracompact and locally compact Hausdorff space and let a topological space Y be the image of X under a closed continuous mapping f. Then Y is a paracompact Hausdorff space. Furthermore Y is locally compact if and only if the boundary $\mathfrak{B}f^{-1}(y)$ of the inverse image $f^{-1}(y)$ is compact for every point y of Y.
- **Theorem 3.** Let X be a paracompact and perfectly normal space and let a topological space Y be the image of X under a closed continuous mapping f. Then Y is paracompact and perfectly normal.

The second part of Theorem 2 is a direct consequence of Theorem 4 below.

- **Theorem 4.** Let f be a closed continuous mapping of a paracompact and locally compact Hausdorff space X onto another topological space Y. Denote by Y_0 [or Y_1] the set of all points y of Y such that $f^{-1}(y)$ [or $\mathfrak{B}f^{-1}(y)$] is not compact. Then we have $Y_1 \subset Y_0$ and
- (a) Y_0 is a closed discrete subset of Y;
- (b) $Y-Y_1$ is locally compact;
- (c) the closure of any neighbourhood of y is not compact for every point y of Y_1 .

From Theorem 4 we obtain immediately

Corollary. Under the assumption of Theorem 4 the mapping f admits of a factorization $f = f_2 \circ f_1$ such that

- (i) $f_1: X \to Z$ is a closed continuous mapping onto Z and $\{f_1^{-1}(z) | z \in Z_2\}$ is a discrete collection where Z_2 is the set of points z such that $f_1^{-1}(z)$ contains at least two points;
- (ii) $f_2: Z \to Y$ is a closed continuous mapping and $f_2^{-1}(y)$ is compact for every point y of Y.

Furthermore we can prove

Theorem 5. Let f be a closed continuous mapping of a paracompact and locally compact Hausdorff space X onto a locally compact space Y. Then f can be extended to a continuous mapping of $\gamma(X)$ onto $\gamma(Y)$, where $\gamma(X)$ and $\gamma(Y)$ mean the Freudenthal compactifications of X and Y respectively. $\gamma(Y)$

2. Proof of (a) of Theorem 4. It is sufficient to prove that $\{f^{-1}(y) \mid y \in Y_0\}$ is a discrete collection of closed sets in X. For this purpose we shall show that any compact set C intersects only a finite number of sets $f^{-1}(y)$, $y \in Y_0$. Suppose that there exists a countably infinite number of points x_i , $i=1,2,\cdots$ of X such that

$$x_i \in C \cap f^{-1}(y_i), y_i \in Y_0, i=1,2,\cdots; y_i \neq y_i \text{ for } i \neq j.$$

Since C is compact there exists a limit point x_0 of the set $\{x_i \mid i=1,2,\cdots\}$. We may assume that $f(x_0) \neq y_i$, $i=1,2,\cdots$; if $f(x_0) = y_i$ for some i, we have only to replace $\{x_j\}$ by $\{x_j \mid j \neq i\}$. Putting $y_0 = f(x_0)$, we have

(1)
$$y_0 \in Y_0$$
; $y_0 \neq y_i$ for $i=1,2,\cdots$.

To prove (1) suppose that $y_0 \in Y - Y_0$. Then $f^{-1}(y_0)$ is compact. Since X is locally compact there exists an open set L such that \overline{L} is compact and $f^{-1}(y_0) \subset L$. If we put M = Y - f(X - L), then M is an open set of Y and $x_0 \in f^{-1}(y_0) \subset f^{-1}(M) \subset L$. The point x_0 is a limit point of $\{x_i\}$ and hence $x_i \in f^{-1}(M)$ for some i. Therefore for such i we have $f^{-1}(y_i) \subset f^{-1}(M) \subset L$. Thus $f^{-1}(y_i)$ must be compact but this contradicts the assumption that $y_i \in Y_0$. This proves (1).

By the assumption of the theorem X is paracompact and locally compact, and hence there exists a locally finite open covering $\{G_a \mid \alpha \in \Omega\}$ of X such that \overline{G}_a is compact for each α . If we put

(2)
$$\Gamma = \{\alpha \mid G_{\alpha} \cap f^{-1}(y_0) \neq 0\},\,$$

 Γ is an infinite set, since $f^{-1}(y_0)$ is not compact. Let us put

$$G = \bigcup \{G_{\alpha} \mid \alpha \in \Gamma\}, \ V_0 = Y - f(X - G);$$

then V_0 is open and $f^{-1}(y_0) \subset f^{-1}(V_0) \subset G$.

The set of all points x_i which belong to $f^{-1}(V_0)$, since X is a T_1 -space, consists of an infinite number of points; these points will be denoted by x_{k_i} , $i=1,2,\cdots$. Then x_0 is clearly a limit point of the set $\{x_{k_i}\}$. Therefore if we put $D=\{y_{k_i}|i=1,2,\cdots\}$ we have

$$(4) y_0 \in \overline{D} - D.$$

¹⁾ As for the Freudenthal compactifications, cf. [5].

Now we have $x_{\mathbf{k_i}} \in f^{-1}(V_0)$ and hence $y_{\mathbf{k_i}} \in V_0$. Thus

(5)
$$f^{-1}(y_{ki}) \subset f^{-1}(V_0) \subset G, i=1,2,\cdots$$

In view of (3) and (5) we can find points x_{k_l}' of X and elements α_i of Γ such that

(6)
$$x'_{k_1} \in f^{-1}(y_{k_1}) \cap G_{\alpha_1}, \\ x'_{k_i} \in f^{-1}(y_{k_i}) \cap (X - \bigcup_{j=1}^{i-1} G_{\alpha_j}) \cap G_{\alpha_i}, i = 2,3,\cdots;$$

indeed, since $f^{-1}(y_{k_i})$ is not compact, we have $f^{-1}(y_{k_i}) \subset (X - \bigcup_{j=1}^{i-1} G_{\alpha_j}) \neq 0$ for any finite number of sets $G_{\alpha_1}, \dots, G_{\alpha_{i-1}}$, and hence these x'_{k_i} , α_i can be found by induction.

Since $x'_{k_i} \in G_{\alpha_i}$, $\alpha_i \neq \alpha_j$ for $i \neq j$ and $\{G_{\alpha} \mid \alpha \in \Gamma\}$ is locally finite, the set $\{x'_{k_i} \mid i = 1, 2, \cdots\}$ is a closed subset of X. Therefore $D = \{y_{k_i}\}$ is closed in Y, since f is a closed map. However, (4) shows that D is not closed in Y. Thus we are led to a contradiction, and the assertion (a) in Theorem 4 is proved.

- 3. Proof of (b) of Theorem 4 (cf. Hanai [3]). Let $y \in Y Y_1$. Then $\mathfrak{B}f^{-1}(y)$ is compact. Since X is locally compact, there exists an open set L such that \overline{L} is compact and $\mathfrak{B}f^{-1}(y) \subset L$. If we put $U = f^{-1}(y) \smile L$, V = Y f(X U), then V is open in Y and $f^{-1}(y) \subset f^{-1}(V) \subset U$. Hence we have $\overline{V} \subset \overline{f(U)} = f(\overline{L}) \smile y$. Thus \overline{V} is compact. This proves (b) of Theorem 4.
- 4. Proof of (c) of Theorem 4. Let $y_1 \in Y_1$. Then $\mathfrak{B}f^{-1}(y_1)$ is not compact. According to (a) of Theorem 4 proved in 2 the set $F = \bigcup \{f^{-1}(y) \mid y \in Y_0 y_1\}$ is a closed set of X, and $F \bigcap f^{-1}(y_1) = 0$. Hence if we put V = Y f(F), V is an open set of Y and $y_1 \in V$.

Suppose that there exists a neighbourhood of y_1 whose closure is compact. Then there exists also an open neighbourhood V_1 of y_1 such that \overline{V}_1 is compact and $V_1 \subset V$.

Since $\mathfrak{B}f^{-1}(y_1) \subset f^{-1}(V_1)$ and $\mathfrak{B}f^{-1}(y_1)$ is not compact and X is paracompact, there exists a locally finite collection $\{G_\alpha \mid \alpha \in \Gamma\}$ of open sets of X such that Γ is an infinite set and

- $\mathfrak{B}f^{-1}(y_1) \subset \smile \{G_\alpha \mid \alpha \in \Gamma\},\,$
- (8) $G_{\alpha} \subset f^{-1}(V_1)$ for each α ,
- (9) $G_{\alpha} \cap \mathfrak{B}f^{-1}(y_1) \neq 0$ for each α .

In view of (9) we can take for each α a point x_a of X such that $x_a \in (X - f^{-1}(y_1)) \cap G_a$. Since $\{G_a\}$ is locally finite the set $A = \bigcup \{x_a \mid \alpha \in \Gamma\}$ is a closed discrete set, and moreover A consists of infinitely many points.

On the other hand, the cardinal number of A is shown to be finite as follows. Since \overline{V}_1 is compact and f(A) is discrete, f(A) must be a finite set of points. By the construction of A, we have

- $f(A) \subset V_1 y_1 \subset Y Y_0$. Hence $f^{-1}(y)$ is compact for every point y of f(A) and consequently $A \cap f^{-1}(y)$ consists of a finite number of points since A is discrete. Therefore A must be a finite set of points. This is a contradiction. Thus the assertion (c) in Theorem 4 is proved.
- 5. Proof of Theorem 2. The second part of Theorem 2 follows readily from (b) and (c) of Theorem 4. To prove the first part we shall need the following lemmas.
- **Lemma 1.** Let X be a collectionwise normal space. If there exists a closed subset A of X such that A and every closed subset of X contained in X-A are paracompact, then X is paracompact.

This lemma follows readily from a theorem of C. H. Dowker [2, Lemma 1].20

Lemma 2. Let f be a closed continuous mapping of a paracompact normal space X onto another topological space Y and let Y_1 be the set of points y of Y such that $\mathfrak{B}f^{-1}(y)$ is not compact. If $\{f^{-1}(y) \mid y \in Y_1\}$ is a discrete collection in X, then Y is paracompact.

Proof. Let F be any closed set of Y such that $F \subset Y - Y_1$. If we denote by g the partial map $f | f^{-1}(F)$, then g is a closed continuous mapping of $f^{-1}(F)$ onto F such that $\mathfrak{B}g^{-1}(y)$ is compact for every point g of g. Therefore g is paracompact by g horozonto g. Since g is a closed discrete set, g is paracompact. Moreover g is collectionwise normal by g horozonto g. Therefore g is paracompact by Lemma 1.

Now the first part of Theorem 2 is a direct consequence of Lemma 2.

- 6. Proof of Theorem 5. Theorem 5 follows from Lemma 3 below and Theorem 2 by an argument given in the proof of [5, Theorem 3].
- **Lemma 3.** Let f be a closed continuous mapping of a topological space X onto another topological space Y such that $\mathfrak{B}f^{-1}(y)$ is compact for every point y of Y. If A is a closed set of Y whose boundary $\mathfrak{B}A$ is compact, then $\mathfrak{B}f^{-1}(A)$ is compact.

Proof. Since f is closed, we have $\mathfrak{B}f^{-1}(A)=f^{-1}(A) \frown \overline{X-f^{-1}(A)}$ $\subset f^{-1}(A) \frown f^{-1}(Y-A)=f^{-1}(\mathfrak{B}A)$. For $y \in A$, Int $f^{-1}(y) \subset \operatorname{Int} f^{-1}(A)$ and hence $f^{-1}(y) \subset \mathfrak{B}f^{-1}(A) \subset \mathfrak{B}f^{-1}(y)$. Therefore if we denote by g the partial map $f \mid \mathfrak{B}f^{-1}(A)$, then g is a closed continuous map of

²⁾ By a theorem of E. Michael [4, Theorem 1] and a theorem of Dowker mentioned above it can easily be shown that a collectionwise normal space is paracompact if it is a countable sum of closed sets each of which is paracompact. This is also proved by K. Nagami. This proposition and Lemma 1 fail to be valid if "collectionwise normal" is replaced by "normal"; cf. C. H. Dowker: Local dimension of normal spaces, Quart. J. Math., 6, 101–120 (1955).

 $\mathfrak{B}f^{-1}(A)$ onto $f(\mathfrak{B}f^{-1}(A))=K$ such that $g^{-1}(y)$ is compact for every point y of K. Since K is compact as a closed subset of $\mathfrak{B}A$, $\mathfrak{B}f^{-1}(A)$ is also compact. This proves Lemma 3.

7. Proof of Theorem 3. We note first that Y is collectionwise normal (cf. [6, Theorem 3]). It is also obvious that Y is perfectly normal.

Let $\{G_{\alpha} \mid \alpha < \varOmega\}$ be any open covering of Y where α ranges over all ordinals less than a fixed ordinal \varOmega . Then $\{f^{-1}(G_{\alpha}) \mid \alpha < \varOmega\}$ is an open covering of X. Since X is paracompact, there exists a locally finite closed covering $\{A_{\alpha} \mid \alpha < \varOmega\}$ of X such that $A_{\alpha} \subset f^{-1}(G_{\alpha})$ for each α . Since $\bigvee \{A_{\gamma} \mid \gamma < \alpha\}$ is a closed set of X and f is a closed map, the union $\bigvee \{f(A_{\gamma}) \mid \gamma < \alpha\}$ is closed in Y. As is remarked above Y is perfectly normal. Hence $f(A_{\alpha}) - \bigvee \{f(A_{\gamma}) \mid \gamma < \alpha\}$ is an F_{σ} -set of Y. Therefore there exists a countable number of closed sets $F_{\alpha i}$, $i=1,2,\cdots$ of Y such that

$$f(A_{\alpha}) - \smile \{f(A_{\gamma}) \mid \gamma < \alpha\} = \bigcup_{i=1}^{\infty} F_{\alpha i} \quad \text{for} \quad 1 \leq \alpha < Q.$$

Then we have clearly

$$F_{\alpha i} \cap F_{\beta j} = 0$$
 for $1 \leq \alpha < \beta < \Omega$.

Let Γ be any subset of the set $\{\alpha \mid 1 \leq \alpha < \Omega\}$. Then $\{f^{-1}(F_{\alpha i}) \cap A_{\alpha} \mid \alpha \in \Gamma\}$ is a locally finite collection of closed sets of X and hence the union $\smile \{f^{-1}(F_{\alpha i}) \cap A_{\alpha} \mid \alpha \in \Gamma\}$ is closed. Therefore $\smile \{F_{\alpha i} \mid \alpha \in \Gamma\}$ is closed, since $F_{\alpha i} \subset f(A_{\alpha})$ and hence $f(f^{-1}(F_{\alpha i}) \cap A_{\alpha}) = F_{\alpha i}$.

Thus for each $i=1,2,\cdots$ the family $|F_{\alpha i}| 1 \le \alpha < \Omega|$ is a discrete collection of closed sets in Y. Since Y is collectionwise normal and

$$Y = \bigcup \{F_{\alpha i} \mid 1 \leq \alpha < \Omega, i = 1, 2, \dots\} \bigcup f(A_0)$$

and $F_{\alpha i} \subset G_{\alpha}$, $f(A_0) \subset G_0$, by a theorem of R. H. Bing [1, Theorem 13] we can find a locally finite open covering of Y which is a refinement of $\{G_{\alpha}\}$. This proves Theorem 3.

References

- [1] R. H. Bing: Metrization of topological spaces, Canadian J. Math., 13, 175-186 (1951).
- [2] C. H. Dowker: On a theorem of Hanner, Ark. för Mat., 2, 307-313 (1952).
- [3] S. Hanai: On closed mappings, Proc. Japan Acad., 30, 285-288 (1954).
- [4] E. Michael: A note on paracompact spaces, Proc. Amer. Math. Soc., 4, 831–838 (1953).
- [5] K. Morita: On images of an open interval under closed continuous mappings, Proc. Japan Acad., 32, 15-19 (1956).
- [6] K. Morita and S. Hanai: Closed mappings and metric spaces, Proc. Japan Acad., 32, 10-14 (1956).
- [7] A. H. Stone: Metrisability of decomposition spaces (Abstract), Bull. Amer. Math. Soc., 61, 309 (1955).