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(Comm. by K. KuNuGI, M.J.A., Oct. 12, 1956)

1. Introduction. In a previous paper [6], S. Hanai and the
author have dealt with the problem: ¢ Under what condition will the
image of a metric space under a closed continuous mapping be
metrizable ?”, and obtained the second part of the following theorem;
this result, as M. Tsuda has called our attention, was also obtained
by A. H. Stone and announced in [7].

Theorem 1. Let X be a metric space and let a topological space
Y be the image of X under a closed continuous mapping f. Then Y is
paracompact and perfectly normal. Furthermore, Y is metrizable if
and only if the boundary Bf ~'(y) of the inverse image f~*(y) s compact
for every point y of Y.

In the present note we shall deduce the first part of Theorem
1 as an immediate consequence of Theorem 8 below, and establish an
analogous result for the case of locally compact spaces; namely we
shall prove the following theorems.

Theorem 2. Let X be a paracompact and locally compact Haus-
dorff space and let a topological space Y be the image of X under a
closed continuous mapping f. Then Y is a paracompact Hausdorff
space. Furthermore Y s locally compact if and only if the boundary
Bf (y) of the inverse image f *(y) ts compact for every point y of Y.

Theorem 3. Let X be a paracompact and perfectly normal space
and let a topological space Y be the image of X under a closed continu-
ous mapping f. Then Y is paracompact and perfectly normal.

The second part of Theorem 2 is a direct consequence of Theorem
4 below.

Theorem 4. Let f be a closed continuous mapping of « para-
compact and locally compact Housdorff space X onto another topological
space Y. Denote by Y, [or Y,] the set of all points y of Y such that
f ') [or Bf Y(y)] is not compact. Then we have Y,C Y, and
(a) Y, s a closed discrete subset of Y;

(b) Y-Y, s locally compact;
(¢) the closure of any neighbourhood of y is not compact for every point
Yy of Y,

From Theorem 4 we obtain immediately

Corollary. Under the assumption of Theorem 4 the mapping f
admits of a factorization f=f,of; such that
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(1) fi1:X—>Zis a closed continuous mapping onto Z and {f1(2)|z¢ Z,}
s & discrete collection where Z, is the set of points z such that fi(z)
contains at least two points;

(ii) fo:Z—->Y 1is a closed continuous mapping and f;(y) is compact
for every point y of Y.

Furthermore we can prove

Theorem 5. Let f be a closed continuous mapping of & para-
compact and locally compact Housdorff space X onto a locally compact
space Y. Then f can be extended to a continuous mapping of v(X)
onto (YY), where y(X) and v(Y) mean the Freudenthal compactifica-
tions of X and Y respectively.’

2. Proof of (a) of Theorem 4. It is sufficient to prove that
{f "(¥)|yeY,} is a discrete collection of closed sets in X. For this
purpose we shall show that any compact set C intersects only a
finite number of sets f !(y), yeY, Suppose that there exists a
countably infinite number of points z,, ©=1,2,--+ of X such that

2, €C~f'W.), ¥,€Y,, 1=1,2,--+; y, =y, for i=].

Since C is compact there exists a limit point z, of the set
{z,]t=12,---}. We may assume that f(z,) ¥y, ¢=1,2,---; if flx,) =y,
for some ¢, we have only to replace {x,} by {x,|j=¢}. Putting
Yo=f(x,), we have
(1) Yo€ Yo; yo ¥y, for 1=1,2,---

To prove (1) suppose that y,e Y—Y,. Then f !(y,) is compact.
Since X is locally compact there exists an open set L such that L
is compact and f~'(y,)C L. If we put M=Y—f(X—L), then M is
an open set of Y and z,¢f '(y)Cf (M) L. The point x, is a
limit point of {x,} and hence z,e f*(M) for some ¢. Therefore for
such ¢ we have f'(y)Cf(M)C L. Thus f '(y,) must be compact
but this contradicts the assumption that y,¢ Y,. This proves (1).

By the assumption of the theorem X is paracompact and locally
compact, and hence there exists a locally finite open covering

{G,|ae®} of X such that G, is compact for each a. If we put

(2) I'={a|G.~f (¥, 0},
I' is an infinite set, since f~'(y,) is not compact. Let us put
(3> GZVEGGIOZGIW}, VOZY_f'(X_G);

then V, is open and f ' (y,)Cf YV, CG.

The set of all points x;, which belong to f '(V,), since X is a
T,-space, congists of an infinite number of points; these points will
be denoted by x,,, ©=1,2,--- . Then x, is clearly a limit point of
the set {x,,}. Therefore if we put D={y,, |i=12,---} we have
(4) Yoe D—D.

1) As for the Freudenthal compactifications, cf. [5].
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Now we have x,, ¢ f*(V,) and hence y, ¢ V.
Thus
(5) f_l(ykg)cf_l(VO)CG’ ?::1’2""

In view of (3) and (5) we can find points «;, of X and elements
a, of I' such that
( 6 ) w’,cl € ‘f—l(ykt)f'\ G“x’

i—-1
w;c, ef_l(yk;)f\(X_:lGaj)f\Gd" 7:::2;3y' tts
indeed, since f~'(y,,) is not compact, we have f*(y,,) ~(X —;;1 MESY
=1

for any finite number of sets G.,---,G,,_,, and hence these 7, a;
can be found by induction.

Since w1, € G., a;%a; for i3j and {G,|acI'} is locally finite,
the set {a};]|7=1,2,---} is a closed subset of X. Therefore D= {y,,}
is closed in Y, since f is a closed map. However, (4) shows that D
is not closed in Y. Thus we are led to a contradiction, and the
assertion (a) in Theorem 4 is proved.

3. Proof of (b) of Theorem 4 (cf. Hanai [3]). Let ye Y—Y,.
Then Bf '(y) is compact. Since X is locally compact, there exists

an open set L such that L is compact and Bf y)yC L. If we put
U=f"y)~L, V=Y—f(X—U), then V is open in Y and f '(»)C
fY(V)CU. Hence we have VC AU)=fU)=f(L)—y. Thus V is
compact. This proves (b) of Theorem 4.

4. Proof of (c) of Theorem 4. Let y,¢Y,, Then Bf y,) is
not ecompact. According to (a) of Theorem 4 proved in 2 the set
F=v{f"'W)|yeY,—y,} is a closed set of X, and F ~f (y,)=0.
Hence if we put V=Y—f(F), V is an open set of Y and y,eV.

Suppose that there exists a neighbourhood of y, whose closure
is compact. Then there exists also an open neighbourhood V, of w,
such that V, is compact and V,C V.

Since Bf (y,)Cf YV, and Bf y,) is not compact and X is
paracompact, there exists a locally finite collection {G,|a e I'} of open
sets of X such that I' is an infinite set and

(7) Bf Wy) T (Gu|ael'},
(8) G.CfXV,) for each a,
(9) G, ~Bf \(y,) 30 for each a.

In view of (9) we can take for each « a point x, of X such that
2,6(X—f Yy))~G.. Since {G,} is locally finite the set A=\ {x,|acI"}
is a closed discrete set, and moreover A consists of infinitely many
points.

On the other hand, the cardinal number of A is shown to be

finite as follows. Since V, is compact and f(A4) is discrete, f(A)
must be a finite set of points. By the construction of A4, we have
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fACV,—y,CY-Y, Hence f y) is compact for every point y of
f(A) and consequently A ~f '(y) consists of a finite number of points
since A is discrete. Therefore A must be a finite set of points.
This is a contradiction. Thus the assertion (¢) in Theorem 4 is
proved.

5. Proof of Theorem 2. The second part of Theorem 2 follows
readily from (b) and (¢) of Theorem 4. To prove the first part we
shall need the following lemmas.

Lemma 1. Let X be a collectionwise normal space. If there exists
a closed subset A of X such that A and every closed subste of X
contained itn X—A are paracompact, then X is paracompact.

This lemma follows readily from a theorem of C. H. Dowker [2,
Lemma 1].»

Lemma 2. Let f be a closed continuous mapping of a para-
compact normal space X onto another topological space Y and let Y,
be the set of points y of Y such that Bf *(y) is not compact. If
{f () |y e} s a discrete collection in X, then Y is paracompact.

Proof. Let F be any closed set of Y such that FCY—-Y,. If
we denote by g the partial map f|f '(F'), then g is a closed continu-
ous mapping of f'(F') onto F' such that By '(y) is compact for every
point y of F. Therefore F' is paracompact by [6, Theorem 3]. Since
Y, is a closed discrete set, Y, is paracompact. Moreover Y is collec-
tionwise normal by [6, Theorem 3]. Therefore Y is paracompact by
Lemma 1.

Now the first part of Theorem 2 is a direct consequence of
Lemma 2.

6. Proof of Theorem 5. Theorem 5 follows from Lemma 3
below and Theorem 2 by an argument given in the proof of [5,
Theorem 3].

Lemma 3. Let f be a closed continuous mapping of a topological
space X onto another topological space Y such that Bf ~(y) is compact
for every point y of Y. If A is a closed set of Y whose boundary
BA is compact, then Bf '(A) is compact.

Proof. Since f is closed, we have Bf '(A)=fY(A)~X—f *(4)
Cf YA A~F(Y—A)=Ff YBA). For yeA, Int f(y)CIntf *(4) and
hence f (y) ~Bf (A)CTBf (y). Therefore if we denote by g
the partial map f|Bf *(A), then g is a closed continuous map of

2) By a theorem of E. Michael [4, Theorem 1] and a theorem of Dowker mentioned
above it can easily be shown that a collectionwise normal space is paracompact if it
is a countable sum of closed sets each of which is paracompact. This is also proved
by K. Nagami. This proposition and Lemma 1 fail to be valid if ¢ collectionwise
normal”’ is replaced by ‘‘normal’’; cf. C. H. Dowker: Local dimension of normal
spaces, Quart. J. Math., 6, 101-120 (1955).
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Bf 1(A) onto f(Bf Y(A)=K such that g '(y) is compact for every
point y of K. Since K is compact as a closed subset of B4, Bf (4)
is also compact. This proves Lemma 3,

7. Proof of Theorem 3. We note first that Y is collectionwise
normal (cf. [6, Theorem 8]). It is also obvious that Y is perfectly
normal.

Let {G.|a<®} be any open covering of Y where a ranges
over all ordinals less than a fixed ordinal 2. Then {f YG.,)|a<2}
is an open covering of X. Since X is paracompact, there exists a
locally finite closed covering {A,|a<®} of X such that A,Cf YG.)
for each a. Since — {A,|y<a} is a closed set of X and f is a closed
map, the union —{f(4,)|y<a} is closed in Y. As is remarked
above Y is perfectly normal. Hence f(4,)—<{f(4,)]|y<a} is an
F,-set of Y. Therefore there exists a countable number of closed
sets F,;, 1=1,2,--+ of Y such that

SA)—— {f(A) | y<a} =§1 F,, for 1<a<®.

Then we have clearly
Fy~F5=0 for 1<a<fB<®.

Let I be any subset of the set {a|l=<a<®@}. Then {f '(F,,)
~A,|acI'} is alocally finite collection of closed sets of X and hence
the union « {f " '(F,;)~4,|aecI'} is closed. Therefore — {F, |acI'}
is closed, since F,,C f(A.) and hence f(f Y(F,)~A,)=F,.

Thus for each ¢=1,2,... the family | F,|1<a<®]| is a discrete
collection of closed sets in Y. Since Y is collectionwise normal and
Y=w{F,|lsa<®, 1=12, -} f(4,)
and F,,CG,, f(4,)CG, by atheorem of R. H. Bing [1, Theorem 13]
we can find a locally finite open covering of Y which is a refinement

of {G,}. This proves Theorem 3.
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