153. Remarks on the Sequence of Quasi-Conformal Mappings

By Kêichi Shibata
(Comm. by K. Kunugi, m.J.A., Nov. 12, 1956)

1. It seems to me that there are essentially two kinds of definition, stronger and weaker, for quasi-conformal mapping with bounded dilatation. The former is rather classical definition of Grötzsch, Teichmüller and other authors. In 1951 Pfluger suggested the latter [6], and Ahlfors remarkably improved the theory of quasi-conformal mapping by making use of it in recent few years [1-3]. The present Note, which I owe much to the investigations of Ahlfors, is concerned with relations between these definitions.

Definition 1. A topological mapping $w=f(z)$ from a domain D in the $z(=x+i y)$-plane to a domain Δ in the $u(=u+i v)$-plane is called K-QC mapping in D, when it satisfies the following conditions there:
I) all the partial derivatives $u_{x}, u_{y}, v_{x}, v_{y}$ exist and are continuous,

$$
\begin{gather*}
J(z)=u_{x} v_{y}-u_{y} v_{x}>0 \\
|p|+|q| \\
|p|-|q|
\end{gather*} \frac{1}{\mid p<\infty}
$$

where p, q are the complex derivatives of f

$$
\begin{aligned}
& p(z)=f_{z}=\frac{1}{2}\left[\left(u_{x}+v_{y}\right)+i\left(v_{x}-u_{y}\right)\right], \\
& q(z)=f_{\bar{z}}=\frac{1}{2}\left[\left(u_{x}-v_{y}\right)+i\left(v_{x}+u_{y}\right)\right],
\end{aligned}
$$

and K is a constant ≥ 1.
Let Ω be a Jordan domain, on whose boundary four ordered points $z_{1}, z_{2}, z_{3}, z_{4}$, are marked in the positive sense with respect to Ω. This configuration is named quadrilateral and is denoted by $\Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ or simply by Ω. If one maps a quadrilateral Ω by means of a sensepreserving homeomorphism $T(z)$, the image $T(\Omega)$ is again a quadrilateral. Ω can be mapped conformally onto the interior of a rectangle $0<\xi<1,0<\eta<\lambda$ in the $\zeta(=\xi+i \eta)$-plane, so that the points $z_{1}, z_{2}, z_{3}, z_{4}$ correspond to $\zeta=0,1,1+i \lambda, i \lambda$ respectively. By module of the quadrilateral $\Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is meant the positive number λ, which shall be denoted by $\bmod \Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$.

Definition 2. A topological mapping $w=f(z)$ which transforms a plane domain D onto another such Δ is called a K-QC* mapping, when it satisfies the following conditions:
I^{\prime}) the mapping $w=f(z)$ is sense-preserving,
II^{\prime}) for any quadrilateral $\Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ contained together with its boundary in D the inequality

$$
\bmod f\left(\Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)\right) \leq K \bmod \Omega\left(z_{1}, z_{2}, z_{3}, z_{4}\right)
$$

holds, where K is a finite constant ≥ 1.
We easily see by the module theorem that $K-Q C$ mapping is $K-\mathrm{QC}^{*}$.
2. Lemma 1. Suppase that a sequence $\left\{C_{n}\right\}$ of Jordan curves converges to a Jordan curve C containing the origin $w=0$ in its interior in Fréchet sense and that the finite domain D_{n} bounded by each curve C_{n} also contains $w=0$. Let $w=F_{n}(z)\left(F_{n}(0)=0, F_{n}^{\prime}(0)>0\right)$ be the function which maps the unit disk $|z|<1$ conformally onto D_{n}. Then the sequence $\left\{F_{n}(z)\right\}$ of the mapping functions converges uniformly on $|z|=1$ [4].

Proof. i) $\left\{F_{n}(z)\right\}$ is equicontinuous on $|z|=1$. For otherwise, there would exist two sequences $\left\{z_{k}^{\prime}\right\},\left\{z_{k}^{\prime \prime}\right\}$ on $|z|=1$, a subsequence $\left\{F_{n_{k}}(z)\right\}$ of $\left\{F_{n}(z)\right\}$ and a positive number δ_{1}, such that we have

$$
\left|F_{n_{k}}\left(z_{k}^{\prime}\right)-F_{n_{k}}\left(z_{k}^{\prime \prime}\right)\right| \geq \delta_{1}>0(k=1,2, \cdots), \lim _{k \rightarrow \infty}\left|z_{k}^{\prime}-z_{k}^{\prime \prime}\right|=0 .
$$

Without loss of generality we may assume $z_{k}^{\prime} \rightarrow z_{0}, z_{k}^{\prime \prime} \rightarrow z_{0}$ for $k \rightarrow \infty$. We can choose parametrizations $w_{n}(t), w(t)(0 \leq t \leq 1)$ of the Jordan curves $C_{n}(n=1,2, \cdots)$ and C, such that $\left\{w_{n}(t)\right\}$ converges to $w(t)$ uniformly on the interval [0, 1]. If we put $F_{n_{k}}\left(z_{k}^{\prime}\right)=w_{k}^{\prime}=w_{n_{k}}\left(t_{k}^{\prime}\right)$, $F_{n_{k}}\left(z_{k}^{\prime \prime}\right)=w_{k}^{\prime \prime}=w_{n_{k}}\left(t_{k}^{\prime \prime}\right)$, then we have $\left|t_{k}^{\prime}-t_{k}^{\prime \prime}\right| \geq \alpha>0(k=1,2, \cdots)$. For arbitrary $\varepsilon>0$ we choose a number k_{0} so large that the inequalities $\left|z_{0}-z_{k}^{\prime}\right|<\varepsilon,\left|z_{0}-z_{k}^{\prime \prime}\right|<\varepsilon$ simultaneously hold for $k \geq k_{0}$. The common part of the circle $\left|z-z_{0}\right|=r$ (resp. the disk $\left|z-z_{0}\right| \leq r$) with the unit disk $|z| \leq 1$ will be transformed by $F_{n_{b}}(z)$ to some cross-cut $\Gamma_{n_{k}, r}$ (resp. some subdomain $D_{n_{k}, r}$) of $D_{n_{k}}$, whose endpoints shall be denoted by $A_{k, r}=w_{n_{k}}\left(t_{k}^{\prime}(r)\right), B_{k, r}=w_{n_{k}}\left(t_{k}^{\prime \prime}(r)\right)$. Then $\left|t_{k}^{\prime}(r)-t_{k}^{\prime \prime}(r)\right|>\alpha(\varepsilon \leq r \leq 1$; $\left.k \geq k_{0}+1\right)$. Since C is a Jordan curve, we have $\left|w\left(t_{k}^{\prime}(r)\right)-w\left(t_{k}^{\prime \prime}(r)\right)\right|$ $\geq \beta>0$. Consequently we see by our assumption of Fréchet convergence that there exists a positive integer k_{1} depending on $\gamma<\beta$, such that

$$
\left|w_{n_{k}}\left(t_{k}^{\prime}(r)\right)-w_{n_{k}}\left(t_{k}^{\prime \prime}(r)\right)\right| \geq \gamma>0 \quad \text { for all } r \in[\varepsilon, 1]
$$

provided $k \geq k_{1}$. Thus we can extract a contradiction from the wellknown inequality

$$
\int_{\varepsilon}^{1} \frac{d r}{r} \leq \frac{2 \pi}{\gamma^{2}} \int_{A \varepsilon)}^{A(1)} d A(r)
$$

where $A(r)$ means the area of $D_{n_{k, r}, r}\left(k \geq k_{1}\right)$.
ii) Let $F(z)$ be the function mapping $|z|<1$ conformally onto the interior of $C\left(F(0)=0, F^{\prime}(0)>0\right)$. Then by Carathéodory's theorem $\left\{F_{n}(z)\right\}$ converges uniformly to $F(z)$ in $|z|<1 . \quad F(z)$ is continuous on $|z| \leq 1$.
iii) $\left\{F_{n}(z)\right\}$ converges to $F(z)$ uniformly on $|z|=1$. For otherwise, $\max _{|z|=1}\left|F(z)-F_{n}(z)\right| \geq \alpha^{\prime}>0 \quad(n=1,2, \cdots)$. By the maximum-modulus
principle and i) the family $\left\{F_{n}(z)\right\}$ is normal on $|z| \leq 1$. Namely, a suitable subsequence $\left\{F_{n_{\nu}}(z)\right\}$ of $\left\{F_{n}(z)\right\}$ can be chosen so that it is uniformly convergent on $|z| \leq 1$. Put

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} F_{n_{\nu}}(z)=F_{0}(z) \quad \text { on }|z| \leq 1 \tag{1}
\end{equation*}
$$

Then by ii) $F_{0}(z) \equiv F(z)$ in $|z|<1$ and accordingly on $|z| \leq 1$. Therefore we would have $\max _{|z|=1}\left|F_{0}(z)-F_{n_{\nu}}(z)\right| \geq \alpha^{\prime} \quad(\nu=1,2, \cdots)$, which is contrary to (1).

Theorem 1. Let $\zeta=\varphi_{n}(z)\left(\varphi_{n}(0)=0 ; n=1,2, \cdots\right)$ be a $K-Q C$ mapping from $|z|<1$ to $|\zeta|<1$. If the sequence $\left\{\varphi_{n}(z)\right\}$ converges to a function $\varphi(z)$ uniformly in $|z|<1, \zeta=\varphi(z)$ is a $K-Q C^{*}$ mapping from $|z|<1$ to $|\zeta|<1$.

Proof. It is known that $\zeta=\varphi(z)$ supplies a homeomorphism from $|z|<1$ to $|\zeta|<1$ [7]. Let us fix a rectangle R confined with its boundary B in $|z|<1$, whose vertices shall be denoted by $z_{1}, z_{2}, z_{3}, z_{4}$. We write $\varphi_{n}\left(z_{k}\right)=\zeta_{k}^{(n)}, \varphi\left(z_{k}\right)=\zeta_{k}(k=1,2,3,4 ; n=1,2, \cdots)$ for later use. Suppose that B is transformed by $\varphi_{n}(z)$ to C_{n} and by $\varphi(z)$ to C. Then C_{n} and C are Jordan curves, and the sequence $\left\{C_{n}\right\}$ converges to C in Fréchet sense. Let $\left[C_{n}\right]$ (resp. [C]) be the interior of C_{n} (resp. C). If we put $\varphi\left(z_{0}\right)=\zeta_{0}$ for the centre z_{0} of R, ζ_{0} will be contained in [C $\left.C_{n}\right]$ from some number N onwards. Let $\zeta=G_{n}(Z)$ (resp. $\zeta=G(Z)$) be the function which maps [C_{n}] (resp. [C]) conformally onto $|Z|<1$ with the normalization $G_{n}(0)=G(0)=\zeta_{0}, G_{n}^{\prime}(0)>0, G^{\prime}(0)>0 ; n \geq N$. If we put $Z_{k}^{(n)}=G_{n}^{-1}\left(\zeta_{k}^{(n)}\right), Z_{k}=G^{-1}\left(\zeta_{k}\right)$, we see at once

$$
\begin{equation*}
\lim _{n \rightarrow \infty} G_{n}\left(Z_{k}^{(n)}\right)=\lim _{n \rightarrow \infty} \zeta_{k}^{(n)}=\zeta_{k}=G\left(\boldsymbol{Z}_{k}\right) . \tag{2}
\end{equation*}
$$

Now, if $\left\{\boldsymbol{Z}_{k}^{(n)}\right\}$ never tend to Z_{k} for $n \rightarrow \infty$, then for a suitable subsequence, say again $\left\{\boldsymbol{Z}_{k}^{(n)}\right\}$, we would have $\lim _{n \rightarrow \infty} Z_{k}^{(n)}=Z_{k}^{\prime} \neq Z_{k}$. Therefore $\lim _{n \rightarrow \infty} G_{n}\left(Z_{k}^{(n)}\right)=G\left(\boldsymbol{Z}_{k}^{\prime}\right)=G\left(Z_{k}\right)$ by Lemma 1 and (2). We must have $Z_{k}^{\prime}=Z_{k}(k=1,2,3,4)$, since $G(Z)$ is univalent. We conclude

$$
\lim _{n \rightarrow \infty} \bmod \Gamma\left(Z_{1}^{(n)}, Z_{2}^{(n)}, Z_{3}^{(n)}, Z_{4}^{(n)}\right)=\bmod \Gamma\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}\right),
$$

where Γ denotes the unit disk. It is equivalent to the relation

$$
\lim _{n \rightarrow \infty} \bmod \left[C_{n}\right]\left(\zeta_{1}^{(n)}, \zeta_{2}^{(n)}, \zeta_{3}^{(n)}, \zeta_{4}^{(n)}\right)=\bmod [C]\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right),
$$

from which our desired inequality

$$
\bmod [C]\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right) \leq K \bmod R\left(z_{1}, z_{2}, z_{3}, z_{4}\right)
$$

follows.
3. The following propositions will play fundamental rôle throughout the whole theory of $K-\mathrm{QC} *$ mapping.

Let $w=f(z)$ be a K-QC* mapping defined in a rectangle R : $a<x<b, c<y<d$. Then
$1^{\circ} f(z)$ is totally differentiable at almost all points of R

$$
d f(z)=p(z) d z+q(z) d \bar{z}
$$

2° at such a point there hold the inequalities

$$
|p|^{2}=|q|^{2} \geq 0, \quad(|p|+|q|)^{2} \leq K\left(|p|^{2}-|q|^{2}\right)
$$

3° for almost every value of y_{0} belonging to the interval (c, d) $f\left(x, y_{0}\right)$ is absolutely continuous with respect to x in the interval (a, b) $[3,5]$.

The next is due to Ahlfors [3]:
4° any set of 2 -dimensional measure zero in the z-plane is transformed by $w=f(z)$ to a set of 2 -dimensional measure zero in the w-plane.

It follows from $1^{\circ}, 2^{\circ}$ and 4° that $p(z) \neq 0$ a.e. in R, whence the measurable function $h(z)=q(z) / p(z)$ is defined a.e. in R and satisfies

$$
|h(z)| \leq \frac{K-1}{K+1}<1 \quad \text { a.e. in } R
$$

Lemma 2. Let $\zeta=\varphi_{n}(z) \quad\left(\varphi_{n}(0)=0, \varphi_{n}(1)=1\right)$ be a $K-Q C^{*} \operatorname{map-}$ ping from $|z|<1$ to $|\zeta|<1$, and let us write

$$
d \varphi_{n}=p_{n} d z+q_{n} d \bar{z}, \quad h_{n}(z)=\frac{q_{n}(z)}{p_{n}(z)}
$$

If $\lim _{n \rightarrow \infty} \iint_{|z|<1}\left|h_{n}(z)\right|^{2} d x d y=0$, then we have $\lim _{n \rightarrow \infty} \varphi_{n}(z)=z$ uniformly on $|z| \leq 1$.

Proof. Let C be an arbitrary rectifiable Jordan curve in $|z|<1$ and let $[C]$ be its interior. Then by $2^{\circ}, 3^{\circ}$ and Schwarz's inequality

$$
\begin{aligned}
\mid \int_{C} \varphi_{n}(z) d z & =4\left|\iint_{[C]} q_{n}(z) d x d y\right|^{2}=4\left|\iint_{[\mathcal{C}]} h_{n}(z) p_{n}(z) d x d y\right|^{2} \\
& \leq 4 \int_{[\mathcal{C D}]}\left|h_{n}(z)\right|^{2} d x d y \iint_{[\mathcal{C O}]}\left|p_{n}(z)\right|^{2} d x d y \leq 4 K \pi \iint_{\left[C^{\prime}\right]}\left|h_{n}(z)\right|^{2} d x d y .
\end{aligned}
$$

Since the sequence $\left\{\varphi_{n}(z)\right\}$ forms a normal family on $|z| \leq 1$ [1], its suitable subsequence $\left\{\varphi_{n_{\nu}}(z)\right\}$ will be uniformly convergent there. If we put

$$
\lim _{\imath \rightarrow \infty} \varphi_{n_{\nu}}(z)=\varphi(z) \quad|z| \leq 1
$$

we have by the above inequality

$$
\int_{c} \varphi(z) d z=\lim _{\nu \rightarrow \infty} \int_{C} \varphi_{n \nu}(z) d z=0 .
$$

Therefore $\zeta=\varphi(z)$ must be regular in $|z|<1$, while it is a topological mapping from $|z|<1$ to $|\zeta|<1$ by Theorem 1. Thus $\varphi(z) \equiv z$. If the original sequence $\left\{\varphi_{n}(z)\right\}$ do not converge to z uniformly on $|z| \leq 1$, we would have for a suitable subsequence $\left\{\varphi_{n_{k}}(z)\right\}$

$$
\max _{|z| \leq 1}\left|z-\varphi_{n_{k}}(z)\right| \geq a>0 \quad(k=1,2, \cdots) .
$$

This is a contradiction, since $\left\{\varphi_{n_{k}}(z)\right\}$ always contains a subsequence converging uniformly to z on $|z| \leq 1$.

Lemma 3. For any function $S(z)$ of summable square it is possible
to choose a sequence $\left\{S_{n}(z)\right\}(n=1,2, \cdots)$ of functions C^{1} which vanish outside a compact set, so that

$$
\lim _{n \rightarrow \infty} \iint\left|S(z)-S_{n}(z)\right|^{2} d x d y=0
$$

Proof. Given any $\varepsilon>0$, we can find a bounded measurable function $s_{\varepsilon}(z)$ vanishing outside a compact set, such that

$$
\iint\left|S(z)-s_{\varepsilon}(z)\right|^{2} d x d y<\frac{\varepsilon}{3} .
$$

Let $s_{\varepsilon, m}(z)$ be the arithmetic mean of the function $s_{\varepsilon}(z)$ over the disk $|\zeta-z| \leq 1 / m(m=1,2, \cdots)$

$$
s_{\varepsilon, m}(z)=\frac{m^{2}}{\pi} \int_{0}^{1 / m} \int_{0}^{2 \pi} s_{\varepsilon}\left(z+r e^{i \theta}\right) r d r d \theta .
$$

Then $s_{\varepsilon, m}(z)$ is continuous and uniformly (with respect to m) bounded function, and

$$
\lim _{m \rightarrow \infty} s_{\varepsilon, m}(z)=s_{\varepsilon}(z) \quad \text { a.e. }
$$

Therefore there exists a number $m_{0}(\varepsilon)$, such that for $m \geq m_{0}(\varepsilon)$ we have

$$
\iint\left|s_{\varepsilon}(z)-s_{\varepsilon, m}(z)\right|^{2} d x d y<\frac{\varepsilon}{3} .
$$

Let us mean $s_{\varepsilon, m}(z)$ arithmetically once more over a disk with radius $1 / k(k=1,2, \cdots)$ to obtain the smooth function

$$
s_{\varepsilon, m, k}(z)=\frac{k^{2}}{\pi} \int_{0}^{1 / k} \int_{0}^{2 \pi} s_{\varepsilon, m}\left(z+r e^{i \theta}\right) r d r d \theta
$$

There exists a number $k_{0}(\varepsilon, m)$, such that for $k \geq k_{0}(\varepsilon, m)$ we have

$$
\iint\left|s_{\varepsilon, m}(z)-s_{\varepsilon, m, k}(z)\right|^{2} d x d y<\frac{\varepsilon}{3} .
$$

Consequently there holds the inequality

$$
\begin{equation*}
\iint\left|S(z)-s_{\varepsilon, m, k}(z)\right|^{2} d x d y<\varepsilon \tag{3}
\end{equation*}
$$

so far as m, k is large enough for given ε. Let $S_{n}(z)$ be one of the functions $s_{\varepsilon, m, k}(z)$ satisfying (3) when $\varepsilon=1 / n$. The proof is completed.

Theorem 2. Given any $K-Q C^{*}$ mapping $\zeta=\varphi(z)$ from $|z|<1$ to $|\zeta|<1$, there exists a sequence $\left\{\varphi_{n}(z)\right\}$ of functions which converges to $\varphi(z)$ uniformly on $|z| \leq 1$, such that each function $\zeta=\varphi_{n}(z)$ furnishes a $K-Q C$ mapping from $|z|<1$ to $|\zeta|<1$.

Proof. We may assume $\varphi(0)=0, \varphi(1)=1$ without loss of generality. Let us write $d \varphi=p d z+q d \bar{z}, h=q / p$ a.e. in $|z|<1$ and put $h(z)=0$ where it is not defined. Then we can construct by the method in Lemma 3 a sequence $\left\{h_{n}(z)\right\}$ of continuously differentiable functions which tends to $h(z)$ in L^{2} sense. Each $h_{n}(z)$ has a uniformly bounded compact carrier and $\left|h_{n}(z)\right| \leq(K-1) /(K+1)<1$. Ahlfors proved: for any square-summable and Hölder-continuous function $h_{n}(z)\left(\left|h_{n}(z)\right|\right.$
$\leq \kappa<1)$ there exists a function $w=f_{n}(z) \in C^{1}$ which supplies a homeomorphism between the whole z - and w-plane, such that $\tau_{n}(z) / \sigma_{n}(z)=h_{n}(z)$, where $\sigma_{n}(z)=\partial f_{n} / \partial z, \tau_{n}(z)=\partial f_{n} / \partial \bar{z}[2]$. Let $\zeta=\Psi_{n}(w)$ be the function which maps conformally onto $|\zeta|<1$ the image of $|z|<1$ by $f_{n}(z)$ and let $\varphi_{n}(z)$ be the composite function $\zeta=\varphi_{n}(z)=\varphi_{n}\left(f_{n}(z)\right)$ with the normalization $\varphi_{n}(0)=0, \varphi_{n}(1)=1$. Every $\varphi_{n}(z)$ is $K-Q C$, and we write $d \varphi_{n}$ $=p_{n} d z+q_{n} d \bar{z}$. One may express the composite function $\varphi_{n} \circ \varphi^{-1}$ by means of $\tilde{\varphi}_{n}(\zeta)$ with the independent variable ζ. It is obviously a $K^{2}-\mathrm{QC}^{*}$ mapping between the unit disks which can be considered conformal with respect to some Riemannian metric $\left|d \zeta+\widetilde{h}_{n}(\zeta) d \bar{\zeta}\right|$. In order to calculate $\widetilde{h}_{n}(\zeta), d z$ and $d \bar{z}$ should be eliminated from three relations

$$
d \varphi_{n}=p_{n} d z+q_{n} d \bar{z}, \quad d \varphi=p d z+q d \bar{z}, \quad d \bar{\varphi}=\bar{q} d z+\bar{p} d \bar{z}
$$

We obtain

$$
\left(|p|^{2}-|q|^{2}\right) d \varphi_{n}=\left(p_{n} \bar{p}-q_{n} \bar{q}\right) d \varphi+\left(p q_{n}-p_{n} q\right) d \bar{\varphi},
$$

and finally

$$
\tilde{h}_{n}(\zeta)=\frac{\partial \varphi_{n}}{\partial \bar{\varphi}} / \frac{\partial \varphi_{n}}{\partial \varphi}=\frac{p(\boldsymbol{z})}{\overline{p(z)}} \frac{h_{n}(\boldsymbol{z})-h(\boldsymbol{z})}{1-h_{n}(z) h(\boldsymbol{z})} .
$$

Since

$$
\left|\frac{h_{n}(z)-h(z)}{1-h_{n}(z) h(z)}\right| \leq \frac{K^{2}-1}{2 K},
$$

it follows by the well-known theorem of Lebesgue that

$$
\lim _{n \rightarrow \infty} \int_{|\zeta|<1} \int_{\mid<1}\left|\widetilde{h}_{n}(\zeta)\right|^{2} d \xi d \eta=\int_{|z|<1} \int_{n \rightarrow \infty} \lim _{n \rightarrow \infty}\left|\frac{h_{n}(z)-h(z)}{1-h_{n}(z) \overline{h(z)}}\right|^{2}\left(|p(z)|^{2}-|q(z)|^{2}\right) d x d y=0 .
$$

Therefore by Lemma 2 the sequence $\left\{\widetilde{\varphi}_{n}(\zeta)\right.$ \} tends uniformly to the identity on $|\zeta| \leq 1$ for $n \rightarrow \infty$, in other words, $\lim _{n \rightarrow \infty} \varphi_{n}(z)=\varphi(z)$ uniformly on $|z| \leq 1$.

References

[1] Ahlfors, L. V.,: On quasiconformal mappings, Journ. d'anal. Math., 3, 1-58, 207-208 (1953-54).
[2] -: Conformality with respect to Riemannian metrics, Ann. Acad. Sci. Fenn., A,I, 206, 1-22 (1955).
[3] -: On quasiconformal mappings, Lecture at Osaka University, February, 1956.
[4] Courant, R.,: Über eine Eigenschaft der Abbildungsfunktion bei konformer Abbildung, Nachr. Ges. Wiss. Göttingen, 69-70 (1922).
[5] Mori, A.,: On quasi-conformality and pseudo-analyticity (in Japanese), Sūgaku, 7, 75-89 (1955).
[6] Pfluger, A.,: Quasikonforme Abbildungen und logarithmische Kapazität, Ann. Inst. Fourier, 2, 69-80 (1951).
[7] Tôki, Y., and Shibata, K.,: On the pseudo-analytic functions, Osaka Math. J., 6, 145-165 (1954).

