171. On a Multiple Exponential Sum

By Saburô Uchiyama
Department of Mathematics, Hokkaidô University, Sapporo, Japan
(Comm. by Z. Suetuna, m.J.A., Dec. 13, 1956)

Let k be a finite field with $q=p^{\nu}$ elements and $k\left[x_{1}, \cdots, x_{m}\right]$ denote the ring of polynomials in m indeterminates x_{1}, \cdots, x_{m} with coefficients in k. For $\alpha \in k$, we write as usual

$$
e(\alpha)=e^{2 \pi i t(\alpha) / p}
$$

where

$$
t(\alpha)=\alpha+\alpha^{p}+\cdots+\alpha^{p^{\nu-1}}
$$

Given a polynomial $f=f\left(x_{1}, \cdots, x_{m}\right) \in k\left[x_{1}, \cdots, x_{m}\right]$ of degree n, not equivalent to a polynomial with indeterminates less than m in number, we construct the exponential sum

$$
S_{m}(f)=\sum_{x_{1}, \cdots, x_{m} \in k} e\left(f\left(x_{1}, \cdots, x_{m}\right)\right),
$$

where x_{1}, \cdots, x_{m} run independently over all elements of k. It is assumed throughout that $1<n<p$.

Recently L. Carlitz and S. Uchiyama [1] have proved the inequality

$$
\begin{equation*}
\left|S_{1}(f)\right| \leqq(n-1) q^{\frac{1}{2}} \tag{1}
\end{equation*}
$$

which can be used, as we shall see, to obtain

$$
\begin{equation*}
S_{m}(f)=O\left(q^{m-\frac{1}{2}}\right) \tag{2}
\end{equation*}
$$

in general. Here and henceforth the constant implied by O depends only upon m and n. The inequality (2) may be compared with a result of S.-H. Min [3], who proved that

$$
S_{m}(f)=O\left(q^{m\left(1-\frac{1}{n}\right)}\right)
$$

for a certain class of polynomials $f \in k\left[x_{1}, \cdots, x_{m}\right]$ of degree $n \geqq 2 m$. Also, in the case of $m=2$, L.-K. Hua and S.-H. Min [2] proved that

$$
S_{2}(f)=O\left(q^{2-\frac{2}{n}}\right)
$$

and that, if $n=3$, then

$$
S_{2}(f)=O\left(q^{\frac{5}{4}}\right)
$$

This last inequality is better than that in (2) with $m=2, n=3$.
Our proof of (2) is highly simple except for the use of the inequality (1). In fact, denoting by l the degree of the polynomial $f\left(x_{1}, \cdots, x_{m}\right)$ with respect to x_{m}, we write

$$
f\left(x_{1}, \cdots, x_{m}\right)=\sum_{j=0}^{l} g_{j} x_{m}^{l-j}
$$

where the $g_{j}=g_{j}\left(x_{1}, \cdots, x_{m-1}\right)$ are polynomials independent of x_{m}. By the assumption, there exists, among the $g_{j}(0 \leqq j \leqq l-1)$, one at least
that is not identically zero in $k\left[x_{1}, \cdots, x_{m-1}\right]$, and it follows from this that the number of solutions $\left(x_{1}, \cdots, x_{m-1}\right)$ in k of the simultaneous equations

$$
\begin{equation*}
g_{0}=g_{1}=\cdots=g_{l-1}=0 \tag{3}
\end{equation*}
$$

is $O\left(q^{m-2}\right)$. Now, denoting by E the set of the solutions $\left(x_{1}, \cdots, x_{m-1}\right)$ in k of (3), we thus obtain

$$
\begin{aligned}
S_{m}(f) & =\sum_{x_{1}, \ldots, x_{m} \in k} e\left(f\left(x_{1}, \cdots, x_{m}\right)\right) \\
& =\sum_{x_{m} \in k} \sum_{\left(x_{1}, \ldots, x_{m-1}\right) \in E}+\sum_{x_{m} \in \kappa} \sum_{\left(x_{1}, \cdots, x_{m-1}\right) \notin E} \\
& =O\left(q^{m-2}\right) \cdot q+\left(q^{m-1}-O\left(q^{m-2}\right)\right) \cdot O\left(q^{\frac{1}{2}}\right) \\
& =O\left(q^{m-\frac{1}{2}}\right),
\end{aligned}
$$

which completes the proof of (2).
We note that the exponent $m-\frac{1}{2}$ of q on the right-hand side of (2) is independent of n, the degree of the polynomial f.

References

[1] L. Carlitz and S. Uchiyama: Bounds for exponential sums, to appear in Duke Math. Jour.
[2] L.-K. Hua and S.-H. Min: On a double exponential sum, Science Reports of National Tsing Hua University, Ser. A, Mathematical, Physical and Engineering Sciences, 4 (1947).
[3] S.-H. Min: On systems of algebraic equations and certain multiple exponential sums, Quart. Jour. Math., Oxford Ser., 18 (1947).

