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82. The Geometry of Lattices by B-covers

By Yataro MATSUSHIMA
Gunma, University, Maebashi
(Comm. by K. KUNUGI, M.J.A., June 12, 1957)

We have studied certain properties of B-covers in lattices as a
generalization of metric betweeness in a normed lattice [2-5]. In
this note we shall consider various geometrical properties in lattices by
B-covers, B*-covers and Bt-covers.

& 1. Preliminaries

We shall use the following definition and lemmas which were
obtained in [5].

B(a, b)={x|v=(a~x)— (b~2)=(a—x)~(b—2) a, b, xc L} is the B-cover
of @ and b in a lattice L, and if ce B(a, b), then we shall write acb.

Lemma 1. axb implies x~(a—b)=x=1x-(a~b).

Lemma 2. axb implies a ~x=a~b, a~b=a—x.

Lemma 3. axb (i=1,2), ax,x, imply ,x.b.

Lemma 4. axbd, bye, abe imply xby.

Lemma 5. axb, byc, abe imply a ~y<w~y.

Lemma 6. (G) is equivalent to (G*) in a modular lattice,
where G) (a~e)—(b~c)=c=(ac)~(b—c),

(G*) (a~c)—(b~c)=c=c—(a~b).

Lemma 7. If L is modular, then B(a,b) is a sublattice.

Lemma 8. In case L is modular, abe, axb, byc imply axe, ayc.

Lemma 9. In case L is modular, abe, axb, byc imply xzye, axy.

Lemma 10. In order that L be a distributive lattice it is neces-
sary and sufficient that the condition (A) below holds for any elements
a,b of L.

(A) xeB(a,b) if and only if a~b=<ax<a-b.

Lemma 11. For any elements a,b,¢,d of L,

(1) B(a,b)=B(c,d) implies awb=c—d, a~b=c~d in any lattice
L;

(2) avwb=cw—d, a~b=c~d imply B(a, b)=B(c, d), if and only if
L is a distributive lattice.

Lemma 12. In case L is a complemented distributive lattice with
0, I, then we have B(a,a’)=B(0, I)=L, where a~a'=0, a—a'=1.

§2. Relations between some B-covers

(1) abec implies (@a~b)b(b~c) and (a—b)b(b—c).

(2) (a~bb(b~c) and (a—b)b(b—c) imply abe.

(8) abc implies ala~b)e and a(a~b)c.

Proof. Since (1), (2) are easy, we shall prove (8). We have b=
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(@~b)~(b~c)<a—(b~c) from abe, hence we have a-b=<a-—(b~c)
<awb, and hence a-b=a—(b~c)=a-—(a~c)—(b~c)<a—((a—b)~c)
<a-b-((a~b)~c)=a-—b, and consequently a—((a—b)~c)=a—>b, that
is, a(a—b)c. The second part of (8) may be proved similarly. It
follows that xe¢ B(a,b) implies a—x, a~x¢ B(a, b).

(4) Let B(a,b)=X, B(b,c)=Y, B(c,d)=Z, and assume that abe,
acd, then we have

@ bed in any lattice,

® abd in a modular lattice,

® XYZ in a modular lattice.

Proof. (@ is implied by Lemma 4, and 3 by Lemma 8. To prove
®), we take e X, yeY, ze¢Z; then bed, byc imply byd by Lemma 8,
abd, byd imply ayd by Lemma 8, abc, axb, byc imply axy by Lemma 9,
ayd, axy imply xyd by Lemma 4, bcd, byc, czd imply yzd by Lemma 9,
and hence xyd, yzd imply xyz by Lemma 4.

(5) In case L is modular, abo, aod, ocd imply XoY, where B(a, b)
=X, B(c,d)=Y.

Proof. If we take ¢ X, ye Y, then ocd, cyd imply oyd by Lemma
8, aod, oyd imply aoy by Lemma 4, abo, axb imply axo by Lemma 8,
and consequently axo, aoy imply xzoy by Lemma 4.

& 3. B*-covers and Bf-covers

We shall define the B*-cover and the Bf-cover of @ and b in a
lattice L as follows; B*(a, b)= {x|abz, a, b, x € L}, B'(a, b)= {x|baz, a, b,
xe L}, B'(a, B*(a, b))= {y | xay for all xe B*(a, b)}, etc.

(1) Bt(a, B*(a, b)) B(a, b).

(2) B(a,B(a, b)) B(a,b), B*(a, B*(a, b)) B*(a, b).

(3) B(a, B'(a, b)) B'(a, b).

Proof. Since (1), (2) are trivial, we have only to prove (8). If
we take yeB(a, B'(a,b)), then bax, ayx imply bay by Lemma 4, and
hence y belongs to Bi(a, b).

(4) For any elements a,b of L, we have the following equality.

Bt(a, B(a, b))=B'(a, b).

Proof. Since it is obvious that B'(a, B(a, b)) B'(a,b), we may
prove that B'(a, B(a, b)) DB'(a,b). If we take x from B'(a,b), then
bax with bya implies xay by Lemma 4, hence x belongs to B'(a, B(a, b)).

(5) In order that L be a modular lattice it is mecessary and
sufficient that the equality below holds for any elements a,b of L.

B*(a, B(a, b))=B*(a, b), B(a, B*(a, b))=DB(a, b).

Proof. Suppose that L is a modular lattice; then it is obvious
that B*(a, B(a, b)) C B*(a, b), so we have only to prove that B*(a, B(a,
b)) DB*(a,b). If we take x from B*(a,b), then for any element y of
B(a, b) we have ayx by Lemma 8, and hence x belongs to B*(a, B(a, b)).
Similarly we have the other equality. If L is not modular, then there
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exist five elements a, b, ¢, x, ¥y such that c=a~y=x~y, b=a—y=2—y,
c<a<x<b. In this case we have B*(a, B(a, b)) = {b}, B*(a, b)={b, y},
B(a, b)={a, x, b}, B(a, B*(a, b))={a, b}, and hence the equality does not
hold.

(6) Bt(a, B(a, B*(a, b)))=B'(a, b).

Proof. B(a,b)DB(a, B*(a,b))>b, and hence we have Bi(a,b)=
Bt(a, B(a, b)) C B'(a, B(a, B*(a, b))) C B'(a, b) by (4), §3, and then we
have Bf(a, B(a, B*(a, b)))=B(a, b).

§4. Structure of lattices

(1) In a lattice L, suppose that B*(b, B(b, a~b))=a b, then

@ a-b is a maximal element;

® if a and b are non-comparable, then there is at least ome
element x in L such that b<xz<a-b and x does mot belong to B(a, b).

Proof. (@ Suppose that x=>ab; then for any yeB(b, a—b) we
have byx from b<y<a-—b=<x, and hence « belongs to B*(b, B(b, a—b)).
Accordingly we have x=a-b by hypothesis. @ If a—b covers b,
then B(b, a—b)={b, a~b}, B*(b, B(b, a~~b))={a—b,a,---}, and hence
the equality does not hold. Moreover, if ¢ B(a,b) for all z, such
that b<x,<a—b, then we have B(b, a~~b)={b, x,, a~—b}, B*(b, B(b, a—b))
={ab,a,---}, and hence the equality does not hold, too. This com-
pletes the proof.

(2) Following L. R. Wilcox [1], (a, b) was called a modular pair
when 2=<b implies (z\—a)~b=2z—(a~b) and denoted by (a,b)M. We
shall now define a relative modular pair (e, b)M* when a~b=<x<b
implies (x—a)~b=x—(a~b).

@ B(b,a~b)C B(a,b) implies (a, b)M* and conversely (a,b)M*
implies B(b, a~b) B(a, b).

Proof. For x; such that a~b=<x,<b and ax,b we have x,=(z,—a)
~(@~b)=(x,~a)~b; on the other hand we have x,—(a~b)=2x, from
#;=a~b. Thus we have (a,b)M*. Conversely assume that (a, d)M*;
then we have (a~x,)— (b~ =(a~2)wa;=,, (@ —2) ~(b—2,)=(a ;)
~b=x,—(a~b)=x,, that is, ax,b.

@ (a, b)M* implies (a,b)M and conversely (a,b)M implies (a, b)M*.

Proof. Let b”"<b. If we put b'=b"—(a~b), then a~b=b'=<b.
Hence we have b'=b"—(a~b)=("wa)~b=b"—wa)~(b"—a)~b=(b'~
(@~b)~b"—a)=b'~(b"—a)<V by (a, b)M*, and hence we have (b"—a)
~b=b"—(a~b) for b"<b. Consequently we have (a,b)M. It is easy
to prove the converse.

® A lattice L of finite length is a semi-modular lattice whenever
(@, b)M* is symmetric on a and b.

(8) Suppose that B(a,b)D B(a, a~b)+ B(b, a—b); then aja~b is
18omorphic to a—b/b.

Proof. From B(a,b)>DB(a,a~b), we have azd (1=1,2,---) for
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any «;¢B(a,a~b). Then bz, belongs to B(a,d) by (3), §2, and if
bx,=bwwx, then we have x;,=x, from ax;b (1=1,2,---). Accordingly
2,2, implies bz, b—x,. In the same way, if y,=Fy, where y,
(1=1,2)e B(b, a—b), then we have a~y,5a~y, and a~y,cB(a,b).
Furthermore this mapping preserves order. But we have a~(b—x)
=(a—a)~(b—x)=z for all xzeB(a,a~b) by axb, dually b—(a~y)=y
for all ye B(b, a~~b), hence the two correspondences are inverses, thus
we conclude the proof.

§5. Product of B*-covers

(1) In any lattice L, B*(a—b, b)~B*(a~b, b)=B*(a, b).

Proof. It is obtained from (1), (2), §2.

(2) In case L ts modular, let B*(b,a)=X, B(a,b)=Y, B*(a,b)
=27; then XbZ tmplies XYZ.

Proof. Let zeX, yeY, ze¢Z, and assume that xbz, then xab, ayd
imply a2yb by Lemma 8, xyb, xbz imply xyz by Lemma 8, this completes
the proof.

(83) We have

@® B*(a~b, b)~B*(a-b, b)C B*(a, a~~b)~B*(a, a~b) in any lat-
tice;

® B*(a~b,b)~B*(a—b,b)=B*(a,a~b)~B*(a,a~b) in a distribu-
tive lattice.

Proof. abx implies a(a—b)x, a(a~bdb)x by (8), §2, and B*(a,b)=
B*(a~b,b)~B*(a~b,b) from (1), & 5, and hence we have the proof of @.
In case L is distributive, if we take x from the right hand, then we
have ax=a-—b=b, b=a~b=a~x by Lemma 2, and hence by Lemma
10 we have abx since a—x=b>a~z.

(4) Let P=B*@aw-b,a~b), @=B*@a,a~b)~B*(, a~b), R=B*
(a~b, a)~B*(a—b, b); then we have

@ @QDP in any lattice;

® QDOR=P in a modular lattice;

® Q=R=P in a distributive lattice.

Proof. @ Let ze P; then (a-b)(a~b)z, (a—bd)ala~b) imply
a(a~bdb)x by Lemma 4, and (a—b)(a~b)x, (a~~b)b(a~b) imply bla~b)x
by Lemma 4, hence we have PC Q. @ By Lemma 7, (a—b)ax, (a—b)bx
imply (a—b)a~b)x, and by Lemma 4, (a-—b)(a~b)x, (a-—bala~Db),
(a~~b)b(a~b) imply a(a~b)x, b(a ~b)x, hence we have RC PCQ. On
the other hand (a—b)(a~b)x, (a~~b)a(a~b), (a—b)b(a~b) imply (a—b)ax,
(a~Db)bx by Lemma 8, that is, PC R. Accordingly we have Q D R=P.
® Let zeQ; then we have a~x=<a~b=Za-zx, b~x=a~b=b-—x by
a(a~b)x, b(a~b)x and Lemma 2, and hence we obtain x~(ab)<a~b
<w—(a—>b), that is, (a~~b)(a ~b)x by Lemma 10. Consequently we have
QC P, and hence we obtain P=Q=R by @.

(5) Let a and b of L be mon-comparable and let X,={a|a—a
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=bwa, a~a=b~a, a,b, acL}.

@® B*(a,a)=B*(a~b, a)~B*(a—b, a)=B*(b, a).

Proof. It is implied from (1), § 5.

® B*(a, a)C B*(a, a~~b)~B*(b, a~~b)~B*(a, a ~b)~B*(b, a~b).

Proof. By (3), § 2 aax implies a(a—a)r=a(a—b)x, and aax implies
ala~a)r=a(a~b)x. Since aaxr implies bax and conversely from @,
aax implies b(a—b)x and b(a~b)x.

® In case L is modular, we have > B*(a,a;)=B*(a, a—b)~
B*(b, a~b)~B*(a, a~b)~B*(b, a ~b), where a;cX,.

Proof. By @ we may prove that if we take x from the right

hand, then # belongs to the left hand. We have a~((a~b)—x)=a~b,
a—((a—b)~x)=a—b from a(a—b)x, a(a~b)x.
Now let B,=(a~b)—((a—b)~x)=(a—b)~((a~b)—x), then we have
(1) (@a~b)B,(a—D) since a~db=<B,=<(a~b)wwx, (a—b)~2x=<B,<a-—b, and
(i) @~B)Bw since (ab)w (Boma) = By~ (@~b)—w) =B, and (iii)
(a~D)Byx since (@ —d)~(By—x)=PB,—((@—b)~x)=B, Hence we have
aByx from (ii) and (iii) and (1), § 5, where B,¢ X, by (i). This com-
pletes the proof.

(6) @ In any lattice abb, implies B*(a, b)) C B*(by, b,).

Proof. By Lemma 4 abb,, abx imply b,b,x.

® In case L is modular, abb, is equivalent to B*(a, b,) C B*(a, by).

Proof. By Lemma 8 ab,b,, ab,x imply abx. Conversely if B*(a, b,)
C B*(a, b,), then we have ab,b, since b,€ B*(a, b,).

(7) Let bab, b, —b,=c, b;~b,=d; then we have

@ B*(a,b)~B*(a, b)) B*(a,c)~B*(a,d) in a modular lattice;

® B*(a, b)~B*(a, by)=B*(a,c)~B*(a, d) in a distributive lattice.

Proof. (@ Assume that bab,, abx, abx, then we have a~x
<d~z since a~x<b,, a~x=b,; on the other hand since b,~b,=d=<a
from b,ab, we have d~x<a~=z, and hence a~x=d~x. Similarly we
have a—x=cw—x. Thus we have a(c~x)=(a—x)~c=c by modular
law and that is, acx. In the same way we have adx. @ If acx, adx
in a distributive lattice, then we have a~2 <b,, b,<a—2x by Lemma
2, and we obtain ab,x, ab,x by Lemma 10.
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