104. On Homomorphisms of the Ring of Continuous Functions onto the Real Numbers

By Tadashi Ishii

Department of Mathematics, Ehime University, Japan (Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1957)

Let X be a C^{∞} -manifold and F(X) be the ring of all the C^{∞} functions on X, or let X be a Q-space¹⁾ and C(X) be the ring of all the real-valued continuous functions on X. Then for a non-trivial homomorphism ϕ (i.e. $\phi(f) \equiv 0$) of the function ring F(X) or C(X)into the real number field R, there exists one and only one point pof X such that $\phi(f) = f(p)$ for any f of the respective function ring. Hence it follows that C^{∞} -manifolds X and Y are differentiably homeomorphic if F(X) and F(Y) are isomorphic,²⁾ and that Q-spaces X and Y are homeomorphic if C(X) and C(Y) are isomorphic.³⁾ In this paper we shall study the generalizations of these results. For brevity we use the word 'homomorphism' in place of the word 'non-trivial homomorphism'.

Let X be a completely regular space and let C(X, R) be the ring of all the real-valued continuous functions on X. We denote by \mathfrak{S} a subring of C(X, R) satisfying the following conditions:

(1) $R \subset \mathfrak{C}$,

(2) for a closed set F of X and a point $p \notin F$, there exists a function f of \mathfrak{C} such that $f(p) > \sup_{x \in F} f(x)$,

(3) if f(x) > a > 0 and $f(x) \in \mathbb{S}$, then $f^{-1}(x) \in \mathbb{S}$. The conditions (2) and (3) are weaker than the following conditions (2') and (3') respectively:

(2') for a closed set F of X and a point $p \notin F$, there exists a function f of \mathfrak{S} such that $0 \leq f(x) \leq 1$, f(p) = 1, and f(x) = 0 if $x \in F$, (3') if f(x) > 0 and $f(x) \in \mathfrak{S}$, then $f^{-1}(x) \in \mathfrak{S}$.

It is obvious that the conditions (1), (2') and (3') are all fulfilled, if $\mathfrak{E}=F(X)$ or C(X).

We now define a uniform structure gX of X by the following uniform neighborhoods:

 $U_{f_1,\dots,f_n;\varepsilon}(x) = \{y \mid |f_i(y) - f_i(x)| < \varepsilon, i = 1, 2, \dots, n\}, \text{ where } f_i \in \mathfrak{S}$ $(i=1, 2, \dots, n) \text{ and } \varepsilon \text{ is an arbitrary positive number. Then it is easily seen that <math>gX$ agrees with the topology of X by virtue of (2).

¹⁾ By a C^{∞} -manifold we mean a separable C^{∞} -manifold. For the definition of a Q-space see [3, 4, 7].

²⁾ See [1].

³⁾ See [3, Theorem 57].

T. Ishii

Theorem 1. For any homomorphism ϕ of the ring \mathcal{S} into R there exists one and only one point p of X such that $\phi(f)=f(p)$ for any f of \mathcal{S} , if and only if gX is complete.

Proof. If we put $\Re = \{f \mid \phi(f) = 0\}$, then \Re is a maximal ideal of \mathfrak{C} . In fact, if $\phi(g) = a \neq 0$, $g \in \mathfrak{C}$, then we have $1 - g(x)/a \in \mathfrak{R}$, since $\phi(c) = c$ for any real number c and $\phi(g/a) = \phi(g)/a = 1.4$ Hence we have f+g/a=1 for some $f \in \mathbb{R}$. This shows that an ideal generated by \mathbb{R} and g contains 1, that is, \Re is a maximal ideal. Now let $F(\Re) =$ $\{F_{1/n}(f) \mid f \in \mathbb{R}, n=1, 2, \cdots\}, \text{ where } F_{1/n}(f) = \{x \mid |f(x)| \leq 1/n\}.$ Then it is trivial that $F(\Re)$ does not contain the void set by virtue of (3). Further $F(\Re)$ has the finite intersection property. In fact, if $F_{1/n_i}(f_i)$ $\in F(\Re)$ $(i=1,2,\cdots,n)$ and $\bigcap_{i=1}^{n} F_{1/n_i}(f_i) = \phi$, then we have $f = \sum_{i=1}^{n} f_i^2 >$ min $(1/n_i)^2 > 0$ and $f \in \Re$. Hence \Re contains $1 = ff^{-1}$, since $f^{-1} \in \mathbb{S}$ by (3). This contradicts the maximality of the ideal \Re . Now let ε be an arbitrary positive number and let k be a positive integer such that $2/k < \varepsilon$. Then for any point x of $\bigcap_{i=1}^{n} F_{1/k}(f_i)$, we have $\bigcap_{i=1}^{n} F_{1/k}(f_i)$ $\subset U_{f_1,\dots,f_n}$: $\varepsilon(x)$, where $f_i \in \Re$. On the other hand, for any uniform neighborhood $U_{f_1,\cdots,f_n;\epsilon}$ we can assume that $f_i \in \Re$ for every *i* without losing the generality, since $U_{f_1, \dots, f_n; \varepsilon} = U_{f_1 - a_1, \dots, f_n - a_n; \varepsilon}$, where $a_i = \phi(f_i)$. Thus all the finite intersections of sets of $F(\Re)$ form a Cauchy filter base, which converges to a point $p \in X$ by the hypothesis. Then we have $p \in Z(f) = \{x \mid f(x) = 0\}$ for any $f \in \Re$, and $\phi(f) = f(p)$ for any $f \in \mathbb{G}$. It is obvious that p is the unique point such that $\phi(f) = f(p)$ for any $f \in \mathbb{C}$. To prove the converse, let \overline{gX} be the completion of gX. Since every $f \in \mathbb{S}$ is uniformly continuous on gX, every $f \in \mathbb{S}$ is extended uniformly continuously over \overline{gX} . Now assume that $\overline{gX} \pm gX$. Then for any $x \in \overline{gX} - gX$, there is a homomorphism ϕ_x of \mathfrak{G} into R such that $\phi_x(f) = \tilde{f}(x)$, where \tilde{f} is an extension of f over \overline{gX} . Then there is no point y of X such that $\phi_x(f) = f(y)$ for any $f \in \mathfrak{G}$. In fact, for any y of X, there exists a uniform neighborhood U* of \overline{gX} such that $U^*(x) \cap U^*(y) = \phi$, since \overline{gX} is separated. Moreover, if we put $U(y) = U^*(y) \frown X$, there exists a function f of \mathfrak{G} such that $\sup_{z \notin U(y)} f(z)$ < f(y). From this it follows that $\widetilde{f}(x) \leq \sup_{z \in \mathcal{U}(y)} f(z) < f(y)$. Thus we complete the proof.

By the mapping $\alpha: \alpha(x) = \{f(x) \mid f \in \mathbb{S}\}, X \text{ is homeomorphically} mapped into the Cartesian product space } \prod_{f \in \mathbb{S}} R_f \text{ by virture of (2), where } R_f \text{ is the space } R \text{ of the real numbers for any } f \in \mathbb{S}.$ Let Y be the

⁴⁾ Every homomorphism ϕ of the ring R of the real numbers into R is the identity mapping.

No. 8] On Homomorphisms of the Ring of Continuous Functions

image of X by the mapping α . If gX is complete, then Y is a closed subspace of $\prod_{f \in \alpha} R_f$. Hence X is the Q-space by [7, Theorem 1].

Now let X and Y be completely regular spaces, and let \mathfrak{S}_x and \mathfrak{S}_y be the subrings of C(X, R) and C(Y, R) respectively, each of which satisfies the conditions (1), (2) and (3). Then we have the following

Theorem 2. If the uniform spaces gX and gY, which are determined by \mathfrak{S}_x and \mathfrak{S}_y , are complete, and the rings \mathfrak{S}_x and \mathfrak{S}_y are isomorphic, then X and Y are homeomorphic. Moreover, if η is the homeomorphic mapping from X to Y, then we have $f\eta^{-1} \in \mathfrak{S}_y$ for any $f \in \mathfrak{S}_x$ and $f'\eta \in \mathfrak{S}_x$ for any $f' \in \mathfrak{S}_y$, where $f\eta^{-1}(p') = f(\eta^{-1}p')$ and $f'\eta(p)$ $= f'(\eta p)$.

Proof. For any point p of X, let ϕ_p be a ring-homomorphism of \mathfrak{S}_x into R such that $\phi_p(f)=f(p)$ for any $f \in \mathfrak{S}_x$. If we denote by ψ the isomorphic mapping from \mathfrak{S}_r onto \mathfrak{S}_x , then $\phi_p \psi$ is a ringhomomorphism of \mathfrak{S}_r into R. Therefore by Theorem 1, there exists one and only one point p' of Y such that $\phi_p \psi(f')=f'(p')$ for any $f' \in \mathfrak{S}_r$. If we denote by η the mapping: $p \to p'$, then η is obviously a 1-1 mapping from X to Y, and we have $\psi(f')=f'\eta$ for any $f' \in \mathfrak{S}_r$ and $\psi^{-1}(f)=f\eta^{-1}$ for any $f \in \mathfrak{S}_x$. Let U(p') be any neighborhood of $p' \in Y$, and let f' be a function of \mathfrak{S}_r such that $f'(p') > \sup_{x \notin U(p')} f'(x)$. Then we have $V(p')=\{q' \mid f'(q') > f'(p')-\varepsilon\} \subset U(p')$ for some positive number ε , and $\eta^{-1}V(p')$ is open in X, since $\eta^{-1}V(p')=\{q \mid \psi f'(q) >$ $\psi f'(p)-\varepsilon\}$. Thus η is a continuous mapping. η^{-1} is also a continuous mapping from Y to X. This completes the proof.

Corollary. Let X and Y be the Q-spaces. If the rings C(X, R) and C(Y, R) are isomorphic, then X and Y are homeomorphic.

Proof. The uniform spaces gX and gY, which are determined by C(X, R) and C(Y, R) respectively, are both complete. Hence by Theorem 2, X and Y are homeomorphic.

We shall state a sufficient condition, under which gX is complete. Theorem 3. Let X be a locally compact Hausdorff space such that $X = \bigcup_{n=1}^{\infty} B_n$, where each of B_n is compact, and let \mathfrak{S} be a subring of C(X, R) which satisfies the following condition (4) besides (1) and (2'):

(4) for a sequence of non-negative functions $\{f_n\}$ of \mathbb{S} such that $\{P(f_n)\}$ is locally finite, we have $\sum_{n=1}^{\infty} f_n(x) \in \mathbb{S}$, where $P(f_n) = \{x \mid f_n(x) > 0\}$.

Then the uniform space gX determined by \mathfrak{C} is complete.

Proof. Let $\mathfrak{A} = \{A_{\lambda} \mid \lambda \in A\}$ be the Cauchy filter in gX. We show that some A_{λ} of \mathfrak{A} is contained in a certain compact set. Now let U(p) be a neighborhood of a point p of X such that $\overline{U(p)}$ is compact.

Then the open covering $\{U(p) \mid p \in X\}$ has a locally finite open refinement $\{V_i \mid i=1, 2, \cdots\}$, since X is paracompact.⁵⁾ Furthermore it can be easily seen by the mathematical induction that there exists an open refinement $\{W_i \mid i=1, 2, \cdots\}$ of $\{V_i\}$ such that $\overline{W_i} \subset V_i$ by virtue of normality of X. Then $\{W_i\}$ is also locally finite. We note that for any positive integer *i*, there exists a non-negative function $f_i \in \mathbb{S}$ such that $f_i(x)=0$ if $x \notin V_i$ and $a_i = \min_{x \in \overline{W_i}} f_i(x) > 0$. Now let $f(x) = \sum_{i=1}^{\infty} (i/a_i) f_i(x)$. Then we have $f(x) \in \mathbb{S}$ by virtue of (4). On the other hand, for any positive number ε , there exists an $A_\lambda \in \mathfrak{A}$ such that $A_\lambda \subset U_{f;\varepsilon}(x)$ for any $x \in A_\lambda$, since \mathfrak{A} is the Cauchy filter in gX. This means that f(x)is bounded on A_λ . Thus A_λ must be contained in $\bigcup_{j=1}^{n} \overline{W_j}$ for some positive integer n, since $f(x) \ge m$ if $x \in \bigcup_{j \ge m} \overline{W_j}$. From this it follows that the Cauchy filter \mathfrak{A} converges to a point of X.

Corollary 1. If X is a C^{∞} -manifold and F(X) is the ring of all the C^{∞} -functions on X, then for any homomorphism ϕ of F(X) into R, there exists one and only one point p of X such that $\phi(f) = f(p)$ for any $f \in F(X)$.

Proof. Since F(X) satisfies the conditions (1), (2') and (4) in Theorem 3, the uniform space gX determined by F(X) is complete. Hence by Theorem 1 we have the desired result.

Corollary 2. If X is a C^{∞} -manifold and D(X) is the ring of all the C^{∞} -functions with compact carriers on X, then for any homomorphism ϕ of D(X) into R, there exists one and only one point p of X such that $\phi(f) = f(p)$ for any $f \in D(X)$.

This can be shown by using Corollary 1 and the partition of unity.⁶⁾

Corollary 3. The ring F(X) (D(X)) characterizes the C^{∞}-structure of the C^{∞}-manifold X.⁷⁾

For a particular homomorphism ϕ of the ring \mathfrak{S} satisfying the conditions (1), (2') and (3) into R, we have the following

Theorem 4. There exists one and only one point p of X such that $\phi(f)=f(p)$ for any $f \in \mathbb{S}$, if and only if ϕ is weakly continuous on \mathbb{S} with its weak topology.

The proof is omitted, since it can be carried by the similar way as in [5, Theorem 3].

In the case when X is a locally compact (but not compact) Hausdorff space and \mathfrak{S}_k is the ring of all the real-valued continuous

⁵⁾ Cf. [1, p. 17, Lemma 2].

⁶⁾ This idea of the proof was communicated to the author by Mr. K. Shiga. It is also possible to prove it directly.

⁷⁾ Shanks's result [6] asserting that the ring $D^{k}(X)$ of functions of C^{k} -class with compact carriers on a manifold X of C^{k} -class characterizes the structure of the manifold X can be proved similarly.

functions with compact carriers, \mathfrak{S}_k does not satisfy the conditions (1) and (3). But we have the following

Theorem 5. For any homomorphism ϕ of the ring \mathbb{S}_k into R, there exists one and only one point $p \in X$ such that $\phi(f) = f(p)$ for any $f \in \mathbb{S}_k$.

Proof. We note that $\phi(\alpha f) = \alpha \phi(f)$ for any $f \in \mathbb{S}_k$ and any real number α . In fact, if we put $K = \{x \mid f(x) \neq 0\}$, there exists a function g of \mathbb{S}_k such that $g(x) = \alpha$ if $x \in K$. Hence we have $\alpha f(x) = g(x)f(x)$ for every $x \in X$. From this it follows that $\phi(\alpha f) = 0$ if $\phi(f) = 0$. If $\phi(f) \neq 0$, then the mapping $\phi^*(\alpha) = \phi(\alpha f)/\phi(f)$ is the identity mapping from R onto itself, which shows that $\phi(\alpha f) = \alpha \phi(f)$. By using this fact, it can be easily seen that $\Re = \phi^{-1}(0)$ is a maximal ideal of \mathbb{S}_k . On the other hand, an ideal \Im in \mathfrak{G}_k is maximal if and only if $\mathfrak{F}=\mathfrak{F}_p$, where $p \in X$ and $\mathfrak{P}_p = \{f \mid f(p) = 0, f \in \mathfrak{S}_k\}$, as shown by [2, Theorem 3]. Hence we have $\Re = \Im_p$ for a point p of X. Now let $f \in \Im_k$ and f(p) = 1, and assume that $\phi(f) = \lambda$. Then we have $\phi(f^2) = \lambda$, since $f(p)^2 = 1$. On the other hand it holds that $\phi(f^2) = \phi(f)^2 = \lambda^2$. Hence we have $\lambda = 1$, since $\lambda \neq 0$. For any f of \mathfrak{S}_k such that $f(p) = \alpha \neq 0$, we have $\phi(f/\alpha)=1$, that is, $\phi(f)=\alpha$, since $f/\alpha(p)=1$. This completes the proof. The following corollary is due to Shanks [6].

Corollary. The ring \mathbb{C}_k characterizes the topology of the locally compact Hausdorff space X.

References

- [1] Y. Akizuki: Harmonic Integral (in Jap.), Iwanami Syoten (1955).
- [2] K. Fujiwara: Sur les anneaux des fonctions continues à support compact, Math. J. Okayama Univ., 3, 175-184 (1954).
- [3] E. Hewitt: Rings of real-valued continuous functions, Trans. Amer. Math. Soc., 64, 45-99 (1948).
- [4] E. Hewitt: Linear functionals on spaces of continuous functions, Fund. Math., 37, 161-189 (1950).
- [5] J. Nagata: On lattices of functions on topological spaces and of functions on uniform spaces, Osaka Math. J., 1, 166-181 (1949).
- [6] M. E. Shanks: Rings of functions on locally compact spaces, Bull. Amer. Math. Soc., 57, 295 (1951).
- [7] T. Shirota: A class of topological spaces, Osaka Math. J., 4, 23-40 (1952).