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20. On Symmetric Skew Unions of Knots

By Yoko HasHIZUME® and Fujitsugu HOSOKAWA**
(Comm. by K. KuNuGi, M.J.A., Feb. 12, 1958)

Introduction. 8. Kinoshita and H. Terasaka introduced the notion
of symmetric unions and symmetric skew unions of knots and showed
that the Alexander polynomial of the symmetric union of a knot is
the square of that of the original knot. As regards the symmetric
skew union of a knot nothing more is obtained than that its Alexander
polynomial A(x) is independent of the winding number. In this note
we shall give a more explicit form of A(x) and show especially that
this is of the form ¢(x)-p(1/x)."

1. We shall call a polynomial f(x) symmetric (skew symmetric)
if flx)=arf(1/x) (f(x)=—2a"f(1/x)) for a suitable integer p. We shall
call the integer n—m the reduced degree of a polynomial f(x)=ax'
+---ta "+ +a, "+ - tax+a,if a,=a,_,=---=a,,;=0, a,0,
a,%0 (n>m) and a,_;=:--=a;=a,=0.

Lemma 1. Let f(z) and F(x) be symmetric polynomials with
even reduced degrees and let g(x) and G(x) be skew symmetric poly-
nomials, such that

F(z)=uf(2)+(x—1)g(x)
G(x)=1—2)f(2)+9(@).
Then, if
f@)=ax"+ -+ +a,x™
g(x)=bx"+ -+ +b,a™
where n>m, and a, or b,x0 and a, or b,=0, we have either
(1) {f(w)=anw"+ R S S i
g(x)=ba"+ - -+ +0b,, &
where a,=a,, =0 and b, ;=—Db .1+ (1=1,2,--+, n—(m~+1)), or
(1II) {f(w)= Qi@ ta,a"
g(x)=b,a"+0b, ;2" '+ - - +b, 2"
where b,=—b, 0 and a,_,_;=0,,; (=1,2,---, n—(m-+1)).

Proof. By the conditions
F(x)=(a,+b,)z" ' +(@y_1+b,1—b)2"+ -+ -+ + (@ + by — by )™ 1 — by 2"
G(x): _anxn+l+(an+bn_an—1)xn+ e +(am+1+bm+1_am)xm+l

+(a,,+b,,)x™.
*)  Department of Mathematics, Osaka University.
*%)  Department of Mathematics, Kobe University.
1) This ascertains the result of R. H. Fox and J. W. Milnor [2], for any sym-

metric (skew) unions of knots may easily be proved to belong to the category of knots
considered by them,
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Now the following four cases are to be considered:

Case 1. a,%0, 5,0 and a,=>b,=0. By the symmetricity of
F(x) and the skew symmetricity of G(x), we have a,=—b,, and a,=b,,
respectively, which contradict a,=0. Therefore, the case 1 can not
actually occur.

Case 2. a,x0, b,%+0 and a,=b,=0. We are going to prove
that this case is also impossible.

First we have a,_;=0. For if a, ;30, by the symmetricity of
f(x) we have a,_,=a,, and n—m—1 must be even. And since b,,=0
and a,+b,30 and since the reduced degree of F'(x) is assumed to be
even, a,,—b,,,;=0, hence b, ,,=a, 3=0; thus by the skew symmetricity
of g(x) b,=—b,.,, By the skew symmetricity of G(x) we must have,
since b,,=0 and a,=0, either a,=a,_,—b,50 or a,_,—b,=0. But the
former case contradicts a,=a,_, and b,=0, and the latter case con-
tradiets «,—b,.,=0, b,=—b,,; and a,_,=a,. Thus we must have
a,_;=0.

Also we have b,,,,=0. For if b,,,, =0, then by the skew symmetri-
city of g(x) and G(x) we have b,,,,=—b,=a,, and b,_,=—b,,,,. Suppose
now that a,_,=0. Since the reduced degree n—m—2 of f(x) is even,
the coefficient of #™+* of F'(x) is equal to zero: ie. @, 1+b,,;—b,..=0.
And by the skew symmetricity of G(%), b, ,—@,.,=—a,.;. But from
the above properties, b,.1,=a, =, ,=b, +0,,;=b, 1+b,..—b, 1=
—b,,,13x0, which is impossible. Hence we must have a,_,=0. But
from the above properties we have a,,,=—b,,,1=b,... Since a, . .+
bpi1—bm.2=0,.,30, we have by the symmetricity of F(«), b,=b,,.,=0,
which contradicts b,=—b,,.;. Thus we have seen that b,,,=0.

Now by the symmetricity of F(x) and the skew symmetricity of
G(x), we have b,=a,, =0 and b,= —a,,, which are impossible. Thus the
case 2 can not actually occur.

Case 3. a,=a, 0. By the symmetricity of f(x) we have a,_;
=@, (1=1,2,-«+, n—m).

We assert that a,=a,+0b,0. For if a,+b,=0, then a,,=—0b,,
%0. Then we have a,+b,50, for if a,+b,=0, we must have b,=
—a,=—a,=>b, which contradicts b,=—b, 0. Moreover we have
@pi1+b,.150. Forifa,, +b,,.,=0, then by the skew symmetricity of
G(x), ¢,=0p,,+by,;—a,=—a,, which contradicts a,=a, 30. By the
symmetricity of F'(x) we have a,+b,=—b,=a, and a,_,+b,_,—b,=a,,
+b,,—b,,.1, hence we have b,=0 and a,_,+b, ,=—b,,,. Here, in view
of G(x#) we have the following two ecases: a,=a, . ;+b,.,1—a@, 30 or
Cpi1t+by.1—a,=0. In the former case, since a,=a,,,1+b,.,1— =0 .1
-a, ,—b, y—a,=~—b, ,—a, we have 2a,=—b,_;, which contradicts
~b,_,=b,=—a,=—a, And in the latter case, since 0=a, ,;+b,.1
-a,=—b,_,—a,, we have a,,=—b,_,, which contradicts a,,=—b,,=b,_,
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+0. Hence a,+0b,=0 is impossible, as we asserted.

Thus from a,=a,+b, and a,=a, we have b,=0. By the skew
symmetricity of G(x) we have a, ;4+b,.;—,_s.1= —(Cniss1+Dniier
—Qp.;) (1=1,2,--., n—m—1). On the other hand, we have a,_,=a,,.,
Hence b,_,=—b,,:.; (¢4=0,1,--.,n—(m+1)); thus the first part (I) of
the conclusion of our Lemma results.

Case 4. b,=—b, 0. Similar consideration as the case 3 leads to
the latter half (II) of the conclusion of our Lemma.

By a simple calculation we have from Lemma 1 directly,

Lemma 2. f(x), g(x), F(x) and G(x) having the same meaning as
wn Lemma 1,

wf(%)—g(x)=a?{f(x"")+g(z"")}

where p 18 a suitably chosen integer. Q Q
2. Now let « be a symmetric skew :1 //

a > ¥a
N

union of a given knot «. We are going

to consider the Alexander polynominal X 1 /& X
Ay(x) of . We may suppose that the G N G
winding number is equal to 1.” Let the : 5? ‘
projection «% of « on the ground plane vo!

E assume the form as shown in Fig. 1. Fig. 1

We now introduce a new knot and a link «; and «, as defined in
Fig. 2 and Fig. 3.

Q _Q e 9
: a : a —a
Wl W e ¥ B
c; c; ___,f'c ST c; I e
i —q —d “d
Ic, (129 ey wa
Fig. 2 Fig. 8 Fig. 4 Fig. 5

It it clear that either i) «, is a knot and «, is a link of multi-
plicity 2, or ii) «, is a knot and «, is a link of multiplicity 2.
Apf(@) or A.(x,x) denoting the Alexander polynomials correspond-
ing to x;, in the case i) we put
S(@)==xa"1A,(x) and g(x)=xa?(x—1)A.(r, x)®
and in the case ii),
F@)y=£0m@—1)Ag@, %) and g@)= £amA(x),
where p, and p, are suitably chosen integers.
Then we have
Theorem. If &' is a symmetric skew union of a knot «, then the
Alexander polynomial A(x) is of the following form;

2) See Theorem 3 of [3].
3) See Theorem, Chap. I of [5].
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2P Aw(®)={f(@)+g(@){f(x~)+g(x")}
where p is a suitably chosen integer and f(x) and g(x) have the above
meaning.
Proof. Since A,(x) is independent of the choice of orientation
of «, we may suppose that «' is oriented as in Fig. 1. Then the
Alexander matrix M of « will take the following form;

b ¢ a ¢--vc, d o  eec,
ay d,
am+1 dm+1
M= z|0|—-1 0 1 — 0
—dy | —ay
* ok 0 0 : : —Cyj
——dm+1 — Qi1

where 1=1,2,.--.,m-+1 and 7=1,2,.-., m.

To calculate the Alexander polynomial, first reduce M to a square
matrix by striking out two columns corresponding to regions b and c.
Then adding each (m+2417)-th row (¢=1,2,--., m+1) to the ¢-th row
and then each j-th column (j=1,2,.-.-,m+1) to the (m-+2+47)-th
column respectively, we have further

1221
Cyy 0 0 0
am+1
—1 0 1 |—1—x 0
—‘d1 —a1
0 0 : —cy;
_dm+1 @y 1

Since the matrices corresponding to «; and «, take the forms

b ¢ d ¢---c, b ¢ d a e¢---c,
4 (—e1-1a | 0 )
M= x| % . Ci; and M,= d.l 0:1 ,
d * ES : . ci]
e dm+1 a’m+1
we have
d, ay '( d,
S(x)= : Cij and g(x): . Ci; _|_x‘ ¢,
dm+1‘ Qo 11 ;dm+1[

Therefore we have

=8P Aw()={f () + g(x)Hxf (x)— g(x)}
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where p is a suitably chosen integer.

Our proof will be complete if we show that f(x) and g(x) satisfy
the conditions of Lemma 2.

For this purpose let us introduce a new knot and a link «, and «,
as defined in Fig. 4 and Fig. 5.

It is clear that in the case i) «, is a knot and «, is a link of
multiplicity 2, and in the case ii) «; is a link of multiplicity 2 and «,
is a knot.

Moreover it is clear that it suffices to prove the theorem only for
the case i).

Then the matrices M, and M, of «, and «, take the following forms;

c e d a c¢---c, b ¢ d a c¢---c,
i1 s -10 o | i - |
d, | a » M= | O B
0 E E Cij * * . . czj
N dm+1 [0 20t dm+1 (L]

We have therefore
A (@) =2f @)+ (@ —1g(e),
2Pz —1)A (2, 2)=(1—2)f(%)+g(x)
where p, and p, are suitably chosen integers.

Since A, (%) and A, (x) are symmetric and of even degree by a
theorem of Seifert [4] and since A, (%, x) and A, (%, %) are skew sym-
metric by a theorem of Torres (Theorem I, Chap. II of [5]), f(x) and
g(x) are thus seen to satisfy the conditions of Lemma 2, and the proof
of the theorem is complete.

Given a link of multiplicity 2, put it in the position «, as Fig. 3.
Then taking the link #, and the knot «; corresponding to «, in Fig. 2
into account, we obtain by use of Lemma 1

Corollary. If « is a link of multiplicity 2, then the polynomial
Az, ) of « has an even degree.
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