35. On Countable-Dimensional Spaces

By Jun-iti NAGATA

Department of Mathematics, Osaka City University (Comm. by K. KUNUGI, M.J.A., March 12, 1958)

As is well known, not every infinite-dimensional metric space is the countable sum of zero-dimensional spaces; in fact the Hilbert-cube I_{ω} is not the countable sum of 0-dimensional spaces. It is known that by the generalized decomposition-theorem due to M. Katětov [1] and to K. Morita [2] a metric space is the countable sum of 0-dimensional spaces if and only if it is the countable sum of finite-dimensional spaces. We call such a space a *countable-dimensional space*. It seems, however, that our knowledge of countable-dimensional spaces is, because of peculiar difficulties to the infinite-dimensional case, very little if compared to that of finite-dimensional spaces.

The purpose of this note is to extend the theory of finite-dimensional spaces to the countable-dimensional case.¹⁾

All spaces considered in the present note will be assumed to be metric spaces unless the contrary is explicitly stated. Dim R denotes the Lebesgue dimension of R.

We denote by $\operatorname{order}_{p} \mathfrak{l}$ for a point p and for a covering \mathfrak{l} of a space R the largest integer n such that there exist n members of \mathfrak{l} which contain p. We also use the notation $B(\mathfrak{l}) = \{B(U) | U \in \mathfrak{l}\}$, where B(U) means the boundary of U.

Lemma 1. Let A_n , $n=1, 2, \cdots$ be a countable number of 0-dimensional sets of a space R. Let $\{U_{\alpha} \mid \alpha < \tau\}^{2}$ be a collection of open sets and $\{F_{\alpha} \mid \alpha < \tau\}$ a collection of closed sets such that $F_{\alpha} \subset U_{\alpha}$, $\alpha < \tau$ and such that $\{U_{\beta} \mid \beta < \alpha\}$ is locally finite for every $\alpha < \tau$. Then there exists a collection of open sets V_{α} , $\alpha < \tau$ such that

1) $F_{\alpha} \subset V_{\alpha} \subset U_{\alpha}, \ \alpha < \tau$,

2) order $p \mathcal{B}(\mathfrak{V}) \leq n-1$ for every $p \in A_n$, where $\mathfrak{V} = \{ V_a \mid a < \tau \}.$

Proof. We shall define, by induction with respect to α , satisfying 1) and

2)_a order_p $B(\mathfrak{V}_{\alpha}) \leq n-1$ for every $p \in A_n$, where $\mathfrak{V}_{\alpha} = \{V_{\beta} \mid \beta \leq \alpha\}$. We take open sets G_1 , W_1 such that

$$G_1 \supset F_1, \quad W_1 \supset U_1^c, \quad \overline{G}_1 \frown \overline{W}_1 = \phi.$$

Since A_1 is 0-dimensional, there exists an open, closed set N_1 of A_1 satisfying $\overline{G}_1 \frown A_1 \subset N_1 \subset (\overline{W}_1)^c \frown A_1$. If we put $B_1 = N_1 \smile F_1$, $C_1 = (A_1 - N_1)$

¹⁾ The detail of the content of this note will be published in an another place.

²⁾ We denote by α , β , γ , τ ordinal numbers.

No. 3]

Suppose that V_{β} has been constructed for every $\beta < \alpha$ ($<_{\tau}$). Then we put

 $H_1 = A_1,$ $H_n = \smile \{B(V_{\beta_1}) \frown \cdots \frown B(V_{\beta_{n-1}}) \frown A_n \mid \beta_1, \cdots, \beta_{n-1} < \alpha\}, n = 2, 3, \cdots$ and put

$$K_{\alpha} = \overset{\infty}{\underset{n=1}{\smile}} H_n.$$

It follows from dim $A_n=0$, $n=1, 2, \cdots$ that dim $H_n \leq 0$, $n=1, 2, \cdots$.

We see easily that for every $n \underset{i=1}{\overset{n}{\smile}} H_i$ is open in K_a . Hence for every $n \quad H_n - \underset{i=1}{\overset{n-1}{\smile}} H_i$ is a 0-dimensional F_a -set. Hence we have, by the generalized sum-theorem [2], dim $K_a \leq 0$. Consequently we can define, in the same way as for the case of $\alpha = 1$, an open set V_a such that

 $F_{a} \subset V_{a} \subset U_{a}, \quad B(V_{a}) \frown K_{a} = \phi,$

which implies $2)_{a}$. This completes the proof.

We can easily prove the following two theorems and one lemma as the consequences of this lemma.

Theorem 1. A space R is countable-dimensional if and only if³, there exists a countable collection of locally finite open coverings \mathfrak{B}_i such that $\mathfrak{B} = \overset{\infty}{\underset{i=1}{\overset{}{\longrightarrow}}} \mathfrak{B}_i$ is a basis of open sets of R and $\operatorname{order}_p B(\mathfrak{B}) < +\infty$ for every point p of R.

Theorem 2. A space R is countable-dimensional if and only if for every collections $\{U_{\alpha} | \alpha < \tau\}$ of open sets and $\{F_{\alpha} | \alpha < \tau\}$ of closed sets such that $F_{\alpha} \subset U_{\alpha}$, $\alpha < \tau$ and such that $\{U_{\beta} | \beta < \alpha\}$ is locally finite for every $\alpha < \tau$, there exists a collection of open sets V_{α} , $\alpha < \tau$ satisfying

1) $F_{\alpha} \subset V_{\alpha} \subset U_{\alpha}, \quad \alpha < \tau,$

2) order $_{p}B(\mathfrak{V}) < +\infty$ for every $p \in R$, where $\mathfrak{V} = \{V_{a} \mid \alpha < \tau\}$.

Lemma 2. Let A_n , $n=1, 2, \cdots$ be a countable number of 0-dimensional sets of a space R. Let $\mathfrak{U} = \{U_\alpha \mid \alpha < \tau\}$ be a locally finite open covering. Then there exists a closed covering $\mathfrak{F} = \{F_\alpha \mid \alpha < \tau\}$ such that $\mathfrak{F} < \mathfrak{U}$ and order, $\mathfrak{F} \leq n$ for every $p \in A_n$.

Theorem 3. A space R is countable-dimensional if and only if there exists a countable collection of locally finite closed coverings of R satisfying

1) for every nbd (=neighborhood) U(p) of every point p of R

³⁾ To prove the "only if" part of this theorem we use a theorem of A. H. Stone [4].

[Vol. 34,

there exists some i with $S(p, \mathfrak{F}_i) \subset U(p)$,

2) $\mathfrak{F}_i = \{F(\alpha_1, \dots, \alpha_i) \mid \alpha_k \in \Omega, k = 1, \dots, i\}, \text{ where } F(\alpha_1, \dots, \alpha_i) \text{ may be empty,}$

- 3) $F(\alpha_1, \cdots, \alpha_{i-1}) = \bigcup \{F(\alpha_1, \cdots, \alpha_{i-1}, \beta) \mid \beta \in \Omega\},\$
- 4) $\sup \{ \operatorname{order}_p \mathfrak{F}_i | i=1, 2, \cdots \} < +\infty \text{ for each point } p \text{ of } R.$

Proof. Let R be a countable-dimensional space with $R = -A_n$

for 0-dimensional A_n and $\mathfrak{S}_1 > \mathfrak{S}_2 > \cdots$ a uniformity of R. Then we shall define \mathfrak{F}_i satisfying 2), 3), $\mathfrak{F}_i < \mathfrak{S}_i$ and $\operatorname{order}_p \mathfrak{F}_i \leq n$ for each point $p \in A_n$. We can define \mathfrak{F}_1 by Lemma 2. Assume that we have defined \mathfrak{F}_k for every k < i; then we put $\mathfrak{F}_{i-1} = \{F_\alpha \mid \alpha < \tau\}$ for brevity. To obtain \mathfrak{F}_i we shall define closed sets $F_{\alpha\beta}$, $\alpha < \tau$, $\beta \in \mathcal{Q}$ such that

i) $F_{\alpha} = \smile \{F_{\alpha\beta} \mid \beta \in \Omega\}, \{F_{\alpha\beta} \mid \beta \in \Omega\} < \mathfrak{S}_i,$

ii) $\mathfrak{G}_{\alpha} = \{F_{\alpha'\beta} \mid \alpha' \leq \alpha, \beta \in \mathcal{Q}\} \smile \{F_{\alpha'} \mid \alpha' > \alpha\}$ is locally finite for every $\alpha < \tau$,

iii) order $_{p} \otimes_{\alpha} \leq n$ for every $\alpha <_{\tau}$ and for each point $p \in A_{n}$.

First we define $F_{1\beta}$, $\beta \in \Omega$ as follows:

We let

 $H_{r+s} = \{p \mid \text{order}_p \{F_a \mid 1 < \alpha < \tau\} = s, \ p \in F_1 \cap A_{r+s}\}, \ r=1, 2, \cdots, s=0, \\ 1, \cdots,$

$$K_r = \underset{s=0}{\overset{\infty}{\smile}} H_{r+s}, \quad r=1, 2, \cdots$$

Since we can easily see that $\overset{\circ}{\underset{s'=1}{\cup}} H_{r+s'\,s'}$ is open in K_r and that dim $H_{r+s\,s} \leq 0$, we have dim $K_r \leq 0$, $r=1, 2, \cdots$. Therefore we can define by Lemma 2 a locally finite closed covering $\mathfrak{G}'_1 = \{F_{1\beta} \mid \beta \in \mathcal{Q}\}$ of F_1 such that $\mathfrak{G}'_1 < \mathfrak{S}_i$, order $\mathfrak{G}'_1 \leq n$ for every $p \in K_n$. It is easy to see that order $\mathfrak{G}_1 \leq n$ for $p \in A_n$ and for $\mathfrak{G}_1 = \mathfrak{G}'_1 \sim \{F_{\alpha'} \mid \alpha' > 1\}$.

The method of defining $F_{\alpha\beta}$ is quite parallel with that of $F_{1\beta}$ except that we use F_{α} and $\{F_{\alpha'\beta} | \alpha' < \alpha, \beta \in \Omega\} \cup \{F_{\alpha'} | \alpha' > \alpha\}$ instead of F_1 and $\{F_{\alpha'} | \alpha' > 1\}$, respectively. The "if" part of this theorem follows from [3].

The following is the direct consequence of this theorem.

Theorem 4. A space R is countable-dimensional if and only if there exist a subset S of $N(\Omega)$ for suitable Ω and a closed continuous mapping f of S onto R such that for each point p of R the inverse image $f^{-1}(p)$ consists of finitely many points, where $N(\Omega)$ denotes the generalized Baire's 0-dimensional space.⁴⁾

Lemma 3. Let R be a countable-dimensional space with $R = \bigcup_{n=1}^{\infty} A_n$, dim $A_n = 0$. Let $\{U_m \mid m = 1, 2, \dots\}$ be a collection of open sets and $\{F_m \mid m = 1, 2, \dots\}$ a collection of closed sets such that $F_m \subset U_m$, m = 1,

⁴⁾ $N(\mathcal{Q}) = \{(\alpha_1, \alpha_2, \cdots) \mid \alpha_i \in \mathcal{Q}, i=1, 2, \cdots\}$. We define the metric ρ of $N(\mathcal{Q})$ as follows: if $\alpha = (\alpha_1, \alpha_2, \cdots), \beta = (\beta_1, \beta_2, \cdots), \alpha_i = \beta_i$ for $i < n, \alpha_n \neq \beta_n$, then $\rho(\alpha, \beta) = 1/n$. This notion is due to [2].

- 1) $F_m \subset U_{mr} \subset \overline{U}_{mr} \subset U_{mr'} \subset \overline{U}_{mr'} \subset U_m$ for r < r',
- 2) $\overline{U}_{mr} = \frown \{ U_{mr'} | r' > r \}, \quad U_{mr} = \smile \{ \overline{U}_{mr'} | r' < r \},$

3) order $_{p}\{B(U_{mr}) \mid m=1, 2, \cdots, |r| < \sqrt{2}/2m, r: rational\} \leq n-1$ for each point $p \in A_{n}$.

Proof. Let us sketch the process of defining U_{mr} . First we number all rational numbers with $|r| < \sqrt{2}/2m$ so that

 $r_{m1},\;r_{m2}\!<\!r_{m1}\!<\!r_{m3},\;r_{m4}\!<\!r_{m2}\!<\!r_{m5}\!<\!r_{m1}\!<\!r_{m6}\!<\!r_{m3}\!<\!r_{m7},\cdots$. Then we put

 $N_{m1} = \{r_{m1}\}, N_{m2} = \{r_{m2}, r_{m3}\}, N_{m3} = \{r_{m4}, r_{m5}, r_{m6}, r_{m7}\}, \cdots$. We shall define U_{mr} satisfying 1), 3) and

2)' if r_{mi} and r_{mk} are adjoining numbers contained in $\bigcup_{k=1}^{s-1} N_{mk}$, $r_{mj} \in N_{ms}$ and $r_{mi} < r_{mj} < r_{mk}$, then

$$U_{r_{mj}} \subset S_{1/s}(\overline{U}_{r_{mi}}) \quad \text{if s is odd,}$$
$$(\overline{U}_{r_{mi}})^c \subset S_{1/s}((\overline{U}_{r_{mk}})^c) \quad \text{if s is even}$$

where we denote, for brevity, $U_{mr_{mi}}$ by $U_{r_{mi}}$, and use the notation $S_{\varepsilon}(U) = \{x \mid \inf \{\rho(x, y) \mid y \in U\} < \varepsilon\}$ for the distance $\rho(x, y)$ between x and y. We define, by induction, all U_{mr} in such an order that

 $U_{r_{11}}, U_{r_{12}}, U_{r_{21}}, U_{r_{13}}, U_{r_{22}}, U_{r_{31}}, \cdots$

The method of defining U_{mr} is analogous to that of V_{α} in Lemma 1. Definition. Let $\{\Re_i | i=1, 2, \cdots\}$ be a collection of star-finite open coverings of a space R. If $\Re = \bigcup_{i=1}^{\infty} \Re_i$ is a basis of open sets, then we call $\{\Re_i | i=1, 2, \cdots\}$ a σ -star-finite basis.

The following theorem is a direct consequence of Lemma 3.

Theorem 5. Let R be a space with a σ -star-finite basis. Then R is countable-dimensional if and only if R is homeomorphic to a subset of $N(\Omega) \times R_{\omega}$ for suitable Ω , where we denote by R_{ω} the set of points in I_{ω} at most finitely many of whose coordinates are rational, and denote by $N(\Omega)$ the generalized Baire's 0-dimensional space for Ω .

Corollary. A separable space R is countable-dimensional if and only if it is homeomorphic to a subset of R_{w} .

References

- M. Katětov: On the dimension of non-separable spaces I, Czechoslovak Math. Jour., 2 (77), 333-368 (1952).
- [2] K. Morita: Normal families and dimension theory for metric spaces, Math. Ann., 128, 350-362 (1954).
- [3] K. Morita: A condition for the metrizability of topological spaces and for ndimensionality, Sci. Rep. Tokyo Kyoiku Daigaku, sec. A, 5, 33-36 (1955).
- [4] A. H. Stone: Paracompactness and product spaces, Bull. Amer. Math. Soc., 54, 977-982 (1948).

No. 3]