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As is well known, not every infinite-dimensional metric space is
the countable sum of zero-dimensional spaces; in fact the Hilbert-cube
I is not the countable sum of 0-dimensional spaces. It is known that
by the generalized decomposition-theorem due to M. Kattov [1 and
to K. Morita [2 a metric space is the countable sum of 0-dimensional
spaces if and only if it is the countable sum of finite-dimensional spaces.
We call such a space a countable-dimensional space. It seems, however,
that our knowledge of countable-dimensional spaces is, because of
peculiar difficulties to the infinite-dimensional case, very little if com-
pared to that of finite-dimensional spaces.

The purpose of this note is to extend the theory of finite-dimen-
sional spaces to the countable-dimensional case.)

All spaces considered in the present note will be assumed to be
metric spaces unless the contrary is explicitly stated. Dim R denotes
the Lebesgue dimension of R.

We denote by order lI for a point p and for a covering lI of a
space R the largest integer n such that there exist n members of
which contain p. We also use the notation B(lI)-- {B(U) U e it}, where
B(U) means the boundary of U.

Lemma 1. Let A., n--1, 2,... be a countable number of O-dimen-
sional sets of a space R. Let Ula<}) be a collection of open sets
and {’ia<} a collection of closed sets such that FU, < and
such that U ]/3< c} is locally finite for every c< 7. Then there exists
a collection of open sets V, a< such that

) FV, U,, <,
2) orderB()n--1 for every pA,

where -{V a<r}.
Proof. We shall define, by induction with respect to a, satisfy-

ing’ 1) and
2) order B(93,)n-- 1 for every p An, where

We take open sets G, W such that

GF, WU, GW-.
Since A is 0-dimensional, there exists an open, closed set N of A
satisfying GAN(W)A. If we put B--NF, C-(A--N)

1) The detail of the content of this note will be published in an another place.
2) We denote by , t, r, v ordinal numbers.
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U,, then (B,C,)(BC)--+. Hence there exists an open set V,
such that BVVCT. Since B(V,)A,--+ is clear, V satisfies
1) and 2) for a=l.

Suppose that V has been constructed for every <a (< r). Then
we put

H,--A,
Hn- {B(V,) B(Vn_I)A ," ",-<}, n=2, 3,...

and put

K,--H.

It follows from dim A-0, n-l, 2,... that
dimH0, n=1,2,...

We see easily that for every n H is open in K. Hence for every
--1

n H--H is a 0-dimensional Fo-set. Hence we have, by the generaliz-

ed sum-theorem [2, dim K,<0. Consequently we can define, in the
same way as for the case of a--l, an open set V, such that

FVU,, B(V,)K,--,
which implies 2). This completes the proof.

We can easily prove the following two theorems and one lemma
as the consequences of this lemma.

Theorem 1. A space R is countable-dimensional if and only if)
there exists a countable collection of locally finite open coverings

such that -- is a basis of open sets of R and orderp B()< +c
i=l

for every point p of R.
Theorem 2. A space R is countable-dimensional if and only if

for every collections { U, a<} of open sets and {F, a< r} of closed
sets such that F, U, a<,. and such that {U[<a} is locally finite
for every a< r, there exists a collection of open sets V,, a< r satisfying

1) F,V, Uo, <,
2) orderp B()< + oo for every p e R,

where
Lemma 2. Let A,,, n= 1, 2,... be a countable number of O-dimen-

sional sets of a space R. Let 1t-- U, a< r} be a locally finite open
covering. Then there exists a closed covering 3--{F,]a<r} such that

<l and order{n for every peAs.
Theorem 3. A space R is countable-dimensional if and only if

there exists a countable collection of locally finite closed coverings of
R satisfying

1) for every nbd (-neighborhood) U(p) of every point p of R

[4].
3) To prove the "only if" part of this theorem we use a theorem of A. H. Stone
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there exists some i with S(p,)U(p),
2) -{F(a,. ., a) a e tg, k-l,..., i}, where F(a,..., a) may

be empty,
3) F(al,..., al-1)-- {F(al,".., ai_, )[ e tf},
4) sup {order i-l, 2,...}< + for each point p of R.

Proof. Let R be a countable-dimensional space with R--A
for 0-dimensional An and >... a uniformity of R. Then we
shall define satisfying 2), 3), < and ordern for each point
p e A. We can define by Lemma 2. Assume that we have defined

for every k<i; then we put _--{F]a<r} for brevity. To obtain
we shall define closed sets F, <, e,2 such that

i) --{F9], {F.(2}<,
ii) {F, a’a, e 9} {F, a’ > a} is locally finite for every

iii) ordern for every a<r and for each point p eAn.
First we define F, e 9 as follows:

We let
H+s--{porder{Fl<<}--s, prAr+s} r--l, 2,..., s--0,

K-H+, r-,2,...
8=0

Since we can easily see that H+, , is open in K and that dim H
81

0, we have dimK0, r--l, 2,... Therefore we can define by
Lemma 2 a locally finite closed covering --{F e tf} of F such that
<, ordern for every p e Kn. It is easy to see that order,n

for p e An and for-{F, a’ > 1}.
The method of defining F, is quite parallel with that of F except

that we use F and {F, a’<a, }{F, ]a’a} instead of F and
{F, a’> 1}, respectively. The "if" part of this theorem follows from

The following is the direct consequence of this theorem.
Theorem 4. A space R is countable-dimensional if and only if

there exist a subset S of N(9) for suitable and a closed continuous
mapping f of S onto R such that for each point p of R the inverse
image f- (p) consists of finitely many points, where N($2) denotes the
generalized Baire’s O-dimensional space2

Lemma . Let R be a countable-dimensional space with R-- A,
dim An--0. Let {U[m=l, 2,...} be a collection of open sets and
{F m-- 1, 2,... a collection of closed sets such that F U, m- 1,

4) N(9)=(1, a.,’") e 9, i= 1, 2,... }. We define the metric p of N(2) as
follows" if a=(al, af,’"), /9=(t1,.,...), ai=Bi for i<n, Bn, then 0(B)=l/n,
This notion is due to [2].
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2,... Then there exists a collection of open sets U, m--l, 2,...,
r l< l/--/2m, r: rational such that

1) FUUU,U,U for r<r’,
2) U-{U.,r’>r}, U-[U,r’<r},
3) order [B(Ur) m= 1, 2,..., r <V/2m, r: rational} n-- 1

for each point p A.
Pro@ Let us sketch the process of defining U. First we

number all rational numbers with ]r[</2m so that

Then we put
N--{rl}, N,--{r, rs}, Ns--{r., r, r, r},.

We shall define Ur satisfying 1), 3) and

2)’ if r, and r are adjoining numbers contained in N,
h=l

r eN and r<r<r, then

UrS/(U) if s is odd,

(r) S/((U if s is even,
where we denote, for brevity, Ur by U, and use the notation S(U)

{x inf [p(x, y) y e U} < s} for the distance p(x, y) between x and y.
We define, by induction, all Ur in such an order that

The method of defining U. is analogous to that of V, in Lemma 1.
Definition. Let {]i--1, 2,...} be a collection of star-finite open

coverings of a space R. If -- is a basis of open sets, then we

call { i- 1, 2,... a a-star-finite basis.
The following theorem is a direct consequence of Lemma 3.
Theorem . Let R be a space with a a-star:finite basis. Then

R is countable-dimensional if and only if R is homeomorphic to a
subset of N(9)xR for suitable 2, where we denote by R the set of
points in I at most finitely many of whose coordinates are rational,
and denote by N(9) the generalized Baire’s O-dimensional space for 9.

Corollary. A separable space R is countable-dimensional if and
only if it is homeomorphic to a subset of R.

References

[1] M. Kattov: On the dimension of non-separable spaces I, Czechoslovak Math.
Jour., 2 (77), 333-368 (1952).

[2] K. Morita: Normal families and dimension, theory for metric spaces, Math.
Ann., 128, 350-362 (1954).

.[3] K. Morita: A condition for the metrizability of topological spaces and for n-
dimensionality, Sci. Rep. Tokyo Kyoiku Daigaku, sec. A, 5, 33-36 (1955).

[4] A. H. Stoae: Paracompactness aad product spaces, Bull. Amer. Math. Soc., 54,
977-982 (1948).


