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32. Measures in the Ranked Spaces

By Hatsuo 0KANO
Osaka University

(Comm. by K. KUNUGI, M.J.A., March 12, 1958)

This paper is an attempt to introduce the notion of measure in
ranked spaces ) which is an extension of the measure in the sense of
Lebesgue) This will be the first step to the general measure theory
in the ranked spaces.

In Section 1, as the preparation for Section 2, we study some
properties of outer measures in topological spaces. In Section 2 we
give outer measures in ranked spaces and study their properties. Some
examples will be given in Section 3.

1. Let R be a space whose topology is given by a system of
neighbourhoods which satisfies F. Hausdorff’s axioms (A), (B) and (C).

Definition 1.) A set function F, defined on the family of all sub-
sets of R, is called an outer measure in R if the following conditions
(1.1)-(1.4) are satisfied:
(1.1) 0_</’(A)_<_+c for any subset A of R.

(1.3) F(A)_F(B) whenever A B.
(1.4) F( [Jl An) <__ ,n%l F(An) for every countable sequence {An} of
subsets of R.

Definition 2.*) Let F be an outer measure in R. A subset A of
R is F-measurable if, for every subset E of R, we have
(1.5) F(E)--F(EA)+F(E(R--A)).6)

Theorem 1. Let F be an outer measure in R which satisfies the
following conditions (1.6)-(1.9):
(1.6) For every disjoint finite or countable family {vn(Pn); n--l, 2,...

of neighbourhoods, F(Jvn(pn))--Jvn(Pn))--O if F(Vn(Pn))< -c.

1) The notion of ranked spaces was introduced by Prof. K. Kunugi in the notes
"Sur les espaces complets et rgulirement complets. I-III ", Proc. Japan Acad., 30,
553-556, 912-916 (1954); 31, 49-53 (1955).

2) F. Hausdorff and A. Appert studied this problem in the metric spaces. S. Saks-
Theory of the Integral (1937). A. Appert" Mesures normales dans les espaces distancids,
Bull. Sci. Math., 60, 329-352, 368-380 (1936).

3) F. Hausdorff: Grundziige der Mengenlehre, 213 (1914).
4) Cf. P. Halmos: Measure Theory (1954).
5) 0 de.otes the empty set.
6) For two subsets A and B of R, A-B de.otes the set of all elements p such

that peA and pB.

7) For any subset A of R, A denotes the closure of A.
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(1.7) For every disjoint finite family {Vn(Pn); l_n_N} of neighbour-
hoods, F(U n=l vn(p))-- ,= I (vn(p)).
(1.8) F(v(p))>O for any neighbourhood v(p).
(1.9) For any subset A of R, F(A)- inf , F(v(p)), where {v(p)]

is a family of neighbourhoods s) whose union contains A.
Then every open set is F-measurable and we have F(A)> O for

every non-empSy open set A.
As the preparation for the proof of the theorem we give some

lemmas.
Lemma 1.1. If an outer measure F satisfies (1.7) then we have

(1.10) /(Uq__l Vn(Pn))- ,,.= I(Vn(Pn)) for every disjoint countable
sequence of neighbourhoods.

Lemma 1.2. If an outer measure F satisfies (1.6)-(1.8)then, for
every non-empty open set G, we have
(I.II) F(G)-- sup _F(vn(p)),

{Vn(Pn)}
where [v(p)} is a finite disjoint family of neighbourhoods whose union
is contained in G.

Lemma 1.3. Under the conditions (1.8) and (1.9), for every subset
A of R, we have F(A)--inf F(G), where G is an open set which con-

tains A.
Proof of Theorem 1. In virtue of Lemma 1.3, it is sufficient to

prove that
(1.12) F( U)>_F( U-,A)+F( U--,(R--A))
for arbitrary two open sets U and A. Let {v(pJ; l<_n<_N} be a
family of disjoint finite neighbourhoods whose union is contained in
U-,,A. We shall prove the inequality

(1.13) F( U)>,:_ F(v(pJ)+F( U(R-- EJ

__
vn(p))).

If U(R--Un= Vn(Pn))--O, the proof is obvious. If U(R-- U 2v-=l Vn(Pn))
4= 0, take any finite disjoint family {u(q); 1

_
m_<M} of neighbourhoods

in it. Then, by (1.3) and (1.7), F( U)>_..=I F(vn(Pn))+,m= F(u(q)).
So, by Lemma 1.2, we have (1.13).

While, from the relation U(R A)G U(R- -_ v(Pn)){ V(R
n=i Vn(Pn)--: v(Pn))}, we have

(1.14) n=l Vn(Pn)))
by (1.6).

Substituting (1.14) into (1.13) we obtain
F( U)>_= F(v(pn))+F( U(R--A)).

Using Lemma 1.2, again we get (1.12).
2. Let R be an 0-ranked space.)

q.e.d.
For any subset A of R and

8) The power of Iv(p)} is not necessarily finite or countable.
9) A ranked space is called 0-ranked space if =0. Cf. [K. Kunugi, IJ, Op. cir.

We do not require, without contrary indication, F Hausdorff’s axiom (C). Cf. H. Okano:
Some operations on the ranked spaces. I, Proc. Japan Acad., 33, 172-176 (1957).



138 H. OK.a.NO [Vol. 34,

a non-negative integer n, (n, A) denotes the upper limit of non-negative
integers m such that there is a disjoint family of m neighbourhoods
of rank n whose union is contained in A. If (n, v(p))-(n, u(q)) when-
ever v(p), u(q), we set (n,m)-(n, v(p)), where v(p). Then
obviously we have the inequality

(n,
if they are determined.

In the sequel we assume that R is an 0-ranked space which satis-
fies the following conditions (2.2)-(2.4):
(2.2) For every neighbourhood v(p) of a point p there exists a
positive integer n such that, for any integer m, n<_m, there exists a
neighbourhood u(p) of rank m included in v(p).
(2.3) For arbitrary two non-negative integers m and n, (m, n) is de-
finitive.
(2.4) There exists a non-negative integer no such that l<_(n, no)<
if n>_no.
From (2.1) and (2.4) we have 0<(n’m) <1<1 if n,m_no.

(n, no) no)-
Therefore there exists an increasing sequence of integers

<n<... such that, for every integer m (m>_no), the sequence

(, o); k-O, 1 is convergent. We set (m)-lim (’ ) and
no)

write (v(p))--(m) for every neighbourhood v(p) of rank m.
Now we define an outer measure in R as follows: We shall set

/*(0)--0 and, if A 0, *(A)-inf (v(p)), where {v(p)} is a
{v(p)]

family of neighbourhoods ) whose union covers A. Then the set func-
tion * is an outer measure: * satisfies the conditions (1.1)-(1.4).

Remark 1. If R is a left (right) ranked group) then * is left
(right) invariant, i.e. for every subset A of R and every point p of R,
,*(pA)- ,*(A) (,*(Ap)-- ,*(A)).

Henceforce we shall study some properties of the outer measure
*. First we give the following lemma.

Lemma 2.1. If {v(p); m--l, 2,...} is a finite or countable dis-
joint family of neighbourhoods whose union is contained in a neigh-
bourhood v(p), then we have (v(p))<_(v(p)).

Now we shall investigate a property of the regularly complete
ranked spaces.)

Definition 3.) An o-ranked space R is called regularly complete

10) Cf. [H. Okano, Section 2 (a*)], Op. cit.
11) See 8). In the sequel we use the terminology "neighbourhood" only when

it has a rank.
12) Cf. [H. Okano, Definition 4], Op. cit.

13) [K. Kunugi, I, D4finition 4], Op. cit.
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if, for every sequence of fundamental sequences {v(p)} in R which
satisfies the condition that p--p and v(p,)=v(p) if m>_n, there
exist a point q in v(p) and a point q in [v(p) such that
lim q q.

Lemma 2.2. Let R be an 0-ranked space which satisfies F. Haus-
dorff’ axiom (C) and the following separation axiom (D’):
(D’) If pq there exist a neighbourhood v(p) of p and a neighbour-

hood u(q) of q such that v(p)u(q)-O.
Then R is regularly complete if and only if, for every fundamental
sequence {V(Pn)}, [V(p) consists of one and only one element, say p,

and, for any neighbourhood v(p) of p, there exists a positive integer
N such that v(p) v(p).

Definition 4. Let z be a positive number and let {v(p); l_<n<_N}
and {u(q); 1m_<M} be two families of disjoint finite neighbour-
hoods. If = (v(p,))>__ (u(q))--e and, for each n, there exists
a neighbourhood v,(p) of p such that the rank of v(p)> the rank
of v,(pn) >Max the rank of u(q) and v(p)v(Pn) U.(q,) for some

m, then {v(p)} is called an e-approximation of {u(q.)}.
Theorem 2. Let R be a regularly complete oo-ranked space with

the conditions (C) and (D’). If t* satisfies (1.6) and the following
condition (2.5) is satisfied:
(2.5) for any positive number e and any neighbourhood v(p) there
exists an e-approximation of v(p),
then every open set is t*-measurable and we have t*(v(p))-(v(p)) for
every neighbourhood v(p).

Proof. First we remark that under the assumption of (2.5), for
any e and every finite disjoint family {v(p)} of neighbourhoods, there
exists an e-approximation of {v(p)}.

If there is a positive integer mo such that (mo)=0 then * is
identically zero. Therefore we assume that (m):>0 for every m. Now
we shall show that, if {v(p); 1 <_nN} is a disjoint finite family of
neighbourhoods and {u(q)} is a family of neighbourhoods such that
U u(q) U .=1 Vn(Pn), then we have the relation

(2.6) 5]

Let e be any positive number. Set [0-{v(p)} and o*-the subfamily
of I0 which consists of neighbourhoods v(p) such that v(p)u(q)
for some u(q) of {u(q)}. By induction we obtain two sequences and
n*, n--0, 1, ., such that is an e/2n-approximation of /_--*_ and

* is the subfamily of . which consists of neighbourhoods v(p)such
that v(p) u(q) for some u(q) of {u(q)}. Then from Lemma 2.1, we
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have ] (v(p))_ (u(q)).

So we shall prove the relation

=(v())-< (v()).(2.7)

Let 3 be the totality of intervals I in the real line such that I= a, b),)

a<b. And let be a correspondence of U%0 ?i into 3 such that

(2.8) (v(p)) (w(r)) if and only if v(p) w(r),
(2.9) (v(p))(w(r))-O if and only if v(p)w(r)-O
and
(2.10) ,(v(p))-(v(p)), where , is Lebesgue measure in the real
line.)

We set J= U (v(p))- U (v(p)). Since ,(J)<e/2 and

U%J is a sum of disjoint countable intervals, then
We set Q- U(v(p)) U v(p)- U% J. If (v(p))-e

(v(p)), then we have ,(Q)>0 and therefore there exists a

countable sequence of intervals (v(p))(v(p))... (vn(pO)

’’" such that
(2.11)
From the property of approximations there is a fundamental sequences
[w(r)} such that r:_-p and w._(r_)-v’(pO. Since R is reg-
ularly complete, there exists a point in v(P0. While r is con-

ained in some u(q) and therefore there exists a neighbourhood
of r which is included in u(q). From Lemma 2.2, we get v(pn) w(r)
for some v(p) and it contradicts (2.11). Hence we have (2.?) and
therefore (2.6).

From (2.6), for every disjoint finite family (v(p)} of neighbour-
hoods, we have *(Ov(P))=(Vn(P))and especially *(v(p))=(v(p)).
The properties (1.7)-(1.9) of Theorem 1 are immediate results of this
fact. Hence, by Theorem I, the proof is concluded.

3. Examples
Example I. Let R be n-dimensional Euclidian space. Since

(R)-0, we set =the totality of v(p-(p))-x=(x); Mxx--p[
I . And put no-0 in (2.4) then * coincides with Lebesgue<+

measure.
Examgle 2, Let R be the ranked saee N, of [K. Kunugi, I,

14) [a, b) denotes the set of all such that ax<b.
15) There exists always at least one correspondence like that.
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Exemple 2. Set no-1 in (2.4) and we get 1-dimensional Lebesgue
measure as *.

Example 3. Let R be the ranked space PU of K. Kunugi, II,
Exemple 3. /* coincides essentially with 2-dimensional Lebesgue
measure.

Example 4. If R is a discrete ranked space, then *(A) the
number of elements of A if A is finite and/*(A)-- o if A is infinite.

Example 5. Let R--Pe(R--R) be an infinite Cartesian product
of real lines. For every positive integer n and every subset {i,..., i}
of n elements of L V?,..., denotes the set of all p-(p) such that
1 >P-> 0 for every k(1 _< k_< n) and 1 >p >_ 0 for every i. The system
n
of neighbourhoods of the origin is the totality of such V?,..., and
the neighbourhoods of another point are given by the translation.
Then we have o(R)--Oo and we set -the family if all neighbour-
hoods V?,..., of all points. Then R is an o0-ranked space which
satisfies the conditions (2.2)-(2.4) and therefore we can construct *.
R does not satisfy F. Hausdorff’s axiom (C).

Remark 2. The spaces of Examples 2, 3 and 5 are ranked groups
but not topological groups.

16) See 1).


