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1. For an ergodic, measure-preserving, one-to-one point trans-
formation on a space of finite measure, M. Kac [2 made an interesting
recurrence theorem which evaluates the value of the integral of a
recurrence time. In this note we shall first state a recurrence theorem
(Theorem 1) which enlightens the asymptotic behavior of a recurrence
time. Next, on using the theorem, we shall give another proof of the
Kac theorem (Theorem 2).

2. Let (X, , #) be a measure space such that X is an abstract
space, ff a a-field of subsets of X and / a finite measure on . It
is supposed that X . Let T be a measure-preserving, single-valued
(not necessarily one-to-one) point transformation of X into itself,
that is,

T 1E [x; Tx E} and /(T 1E) --/(E)
for any E e .

Before stating the definition of a recurrence time we recall a
well-known

Recurrence theorem. For every set E we can choose a set
Ne of measure zero such that for each x eE--N there exists a
positive integer n(x) which satisfies Tn(X)xeE (for example, see
p. 10).

Let E be a set in . The recurrence time r(x)--r(x, E) denotes,
for each x E, the least positive integer such that T(X)x E. Then
r(x) is defined almost everywhere in E by virtue of the recurrence
theorem stated above. Further we define r(x)--O for each xrE.

Theorem 1. For every Eel, the recurrence time r(x) is an
integrable function and

1 ) lim 1 n-
r(TJx)-- 1 for almost all x E,

n
1 for almost all x E.

Theorem 2. For every E e,
2 t(E) j’r(X)l(dx t(X).

Moreover, T is ergodic if and only if
3. ;r(x)t(dx

for every E of positive measure.
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3o Before proving the theorems we prepare a lemma and a
remark.

Lemma. If, for a non-negative measurable function f(x), there
exists an integrable function h(x) such that

lim inf 1 "---, f(TJx)h(x) for almost all x,
n- Tb j=0

then f(x) is an integrable function.
Proof. Let fk(x)= min (f(x), k) (k= 1, 2,...). Then each fk(x) is

integrable, since t is a finite measure. By the individual ergodic

theorem there exists an integrable function f(x) such that

lira lf(Tx)=f(x) for almost all x
n- n

and

f ffk(x)t (dx).

Since f(x)h(x) and {f(x)} is a monotone increasing sequence and
converges to f(x), it follows, by the convergence theorem, that

that is, f(x) is an integrable function.
Retook for the recurrence time. Theorems 1 and 2 are not in-

fluence by the modification of values of r(x) for x in a set of measure
zero. For a given set E, let N denote the exceptional set of measure

zero in the recurrence theorem. If we set N T-N, then (N)--0.
We have nothing particular to say about the values of r(x) in a set
E--N. However, we define newly r(x)-O for x in a set EN.
xCN, there exists no positive integer n such that T’x N. Therefore,
if we define, for each x E-N, r(x)-r(x), r(x)--r(x)+r(Tr()x),...,
rn(x) n-(X)+r(Trn-(x)x), ", then we have

r (x) < r (x) < < r (x) <
since Tr()x E--N (n-- 1, 2,...).

4. Proof of Theorems 1 and 2. Taking any fixed Eel, we
consider r(x)=r(x, E) under the above remark. Then

{x; r(x)--O}=(X--E)N ,
k-1

{x; r(x)-k}-(E--) T-((X--E))T-(E--)
(k=l, 2,...).

Hence r(x) is a measurable function.
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If x E--N, then
r(x)+r(Tx)+. +r(Trv)-x)--r(x),

r(x)+r(Tx)+

so that

lim 1 , r(Tx)_l.

Hence, if x E-- N,

lim sup 1 r(Tx) > lim 1 (i)-1,

lira inf 1--r(Tx)lim 1 r(Tx)--l.
n n j=0 n rn(X j=o

Next, assume xE--N. If there exists no positive integer n such

that T’x e E-- N,
lim sup 1 , r(Tx)--O.

If there exists a positive integer n such that TxeE--N, then by

p(x) we denote the least positive integer such that
Set y--T()x. Then

r(Tx) lim inf r(Tx)
n:o p(x)+rdy) o

lim inf. r(yl p(x)+r(y)r(Y) rc-a:o -.c- }E (T) + E (T)
n-

lira inf r(Ty)- 1.

Consequently, we have

( 4 lira sup 1 r(Tax) 1 for almost all x e E,
n- :l=O

5 lim inf 1 , r(T,x) 1 for almost all x e X.

By virtue of the lemma and (5), r(x) is an integrable function. Hence,
by the individual ergodic theorem, there exists n integrable function
(x) such that

( 6 lim 1__’-, r(Tx)=(x for almost all x e X,
n-oo b

By (4), (5) and (6) we have

(8) (x)-I for almost all x s E,
__=<_ 1 for almost all x s X--E,
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which is just (1). Thus the proof of Theorem 1 is terminated.
Further, by (7) and (8) we have

(E)--fl,(dx) f fr(x)t (dx)
x .x

f
x

which gives (2).
Next, assume that T is ergodic. Take any set Ee of positive

measure. Since T is ergodic, r(x, E) must be constant almost every-
where. Hence, by (8), (x)-I almost everywhere, so that we obtain
(a).

Conversely, assume that T is not ergodic. Then there exists an
invariant set E such that t(E) > 0 and (X--E) > 0. Since T-E--E
and T-’(X--E)--X--E, we have that Tx e E (n--l, 2,...) for all
x e E and Tx e X--E (n= 1, 2,...) for all x e X--E, so that

r(x)-- 1 for all x e E
0 for all x e X--E.

Since both E and X--E are of positive measures, (3) does not hold.
Thus the proof of Theorem 2 is terminated.. For any fixed set Eel, we set

E-- [3 T-E.

Then, for x e E, there exists a positive integer n such that T’xE
and, for xE, there exists no positive integer n such that TxeE.
Hence, on modifying Theorems 1 and 2, we obtain

Theorem 3. For any set E e , the recurrence time r(x) is an
integrable function and

lim _1 r(Tx)= 1 for almost all x ,,
n+ Tb j=0

0 for almost all x E,
and

f
References

[1] P. R. Halmos: Lectures on ergodie Sheory, Tokyo (1956).
[2] M. Kae: On he noion of recurrence in discrete soehasie processes, B11.

Amer. Mah. Soe., 63, 1002-1010 (1947).


