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1. For an ergodic, measure-preserving, one-to-one point trans-
formation on a space of finite measure, M. Kac [2] made an interesting
recurrence theorem which evaluates the value of the integral of a
recurrence time. In this note we shall first state a recurrence theorem
(Theorem 1) which enlightens the asymptotic behavior of a recurrence
time. Next, on using the theorem, we shall give another proof of the
Kac theorem (Theorem 2).

2. Let (X, Y, u) be a measure space such that X is an abstract
space, F a o-field of subsets of X and u a finite measure on &. It
is supposed that X €. Let T be a measure-preserving, single-valued
(not necessarily one-to-one) point transformation of X into itself,
that is,

T'E={x;TxeE}eF and wT 'E)=ukE)
for any Ec¢&.

Before stating the definition of a recurrence time we recall a
well-known

Recurrence theorem. For every set Ee¢F we can choose a set
NeF of measure zero such that for each xeE—N there exists a
positive integer m(x) which satisfies T""xeE (for example, see [1],
p. 10).

Let E be a setin &F. The recurrence time r(x)=r(x, &) denotes,
for each x¢E, the least positive integer such that 7T"®xcE. Then
r(x) is defined almost everywhere in E by virtue of the recurrence
theorem stated above. Further we define 7(x)=0 for each x¢E.

Theorem 1. For every E e, the recurrence time r(x) is an
integrable function and

(1) lim %%r(T%):l for almost all xecE,
n->00 j=0
’ <1 for almost all x¢E.
Theorem 2. For every E <%,

(2) ME)Z [r(@)ud)=u(X).
Moreover, T is ergodic if and only if
(3) [ r(@)ulda)=p(X)

Jor every E e of positive measure.
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3. Before proving the theorems we prepare a lemma and a
remark.

Lemma. If, for a non-negative measurable function f(x), there
exists an integrable function h(x) such that

lim inf —};ni f(Tix)<h(x) for almost all x,
n->00 j=0

then f(x) is an integrable function.

Proof. Let fi(x)=min (f(x), k) (k=1,2,---). Then each f,(x) is
integrable, since p is a finite measure. By the individual ergodic

theorem there exists an integrable function f,c(x) such that
n-1 ~
lim-:‘7 Zofk(T"x)sz(x) for almost all z
n-roo j=
and

[F@utdn)= [ fuauda).

Since fi(#)<h(x) and {f.(x)} is a monotone increasing sequence and
converges to f(x), it follows, by the convergence theorem, that

[ F@udn)=1im [ fi(@)ulda)

=lim [F@udn)= [@pde) <o,

that is, f(x) is an integrable function.

Remark for the recurrence time. Theorems 1 and 2 are not in-
fluenced by the modification of values of r(x) for x in a set of measure
zero. For a given set E, let N denote the exceptional set of measure
zero in the recurrence theorem. If we set N= G TN, then p(ﬁ )=0.
We have nothing particular to say about the ?::Iues of r(x) in a set
E—N. However, we define newly 7(x)=0 for z in a set E~N. If
x¢ N, there exists no positive integer » such that T xe N. Therefore,
if we define, for each xec E—N, r,(x)=7(), ry(x)=r(x)+r(T"“x), -,
r(x)=r,_(x)+r(T™-1"g),-- -, then we have

rx)<ry(x) <o v < (B)< 0 ey,
since Tn®xe E—N (n=1,2,--.).

4. Proof of Theorems 1 and 2. Taking any fixed Ee¢&, we
consider r(x)=7(x, E) under the above remark. Then

{a; r(x)=0}=(X—E)-NeT,
= r(x):k}:(E—N)f-\];ri T-(X—E)y~ Ny~ T-“E—N)eT
(k=1,2,---).
Hence 7(x) is a measurable function.
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If x¢ E—N, then
r(@)+r(Te)+ -« - - +r(TT ) =r(x),

.............

..............

so that
1 ru(®)—1

SV r(Tix)=1.

nsoo vrn(x) 7=0

Hence, if ¢ E—N,

. 1 n=t . . 1 rp(2)—1
hm sup — 2 r(Tx) = hm

> r(T'z)=1,
w)

n =0

lim 1nf = Z r(Tz) < hm 2 r(zj)=1.

" >0 n j= 'rn( ) ji=0

Next, assume xéE—N. If there exists no positive integer n such
that T"xe E—N,

lim sup — Z r(T72)=0.

If there exists a positive mteger n such that T"xcE—N, then by
p(x) we denote the least positive integer such that Tr@yxe E—N.
Set y=T7?*x. Then

lim inf L 53 n(Tiz) < lim inf — L

P(2)+7p(Y)—1

— r(Tx
ny0 N j=0 n>oo p( )—|—’rn(y) jg() ( )
—lim inf —L . "a(%) { (2) "W(Tim)+ 2 (Tfy)}
w1, (Y) D) +7(Y)
. 1 (-1
=lim inf 3 (Tiy)=1.
n->00 ’I‘n y j=0
Consequently, we have
(4) lim sup lﬂi r(Tix)=1 for almost all xc E,
(5) hm inf — 2 r(T/z2)<1 for almost all ze X.
>0 N j=0

By virtue of the lemma and (5), »(%) is an integrable function. Hence,
by the individual ergodic theorem, there exists an integrable function
7(x) such that

(6) lim %S‘j r(T/2)=%x) for almost all xeX,
n->c0 Jj=0
(7) Hoyu(de)= [ r(2)u(da).
Jreman= |
By (4), (5) and (6) we have
(8) 7(x)=1 for almost all z¢ E,

=<1 for almost all xe¢ X—E,
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which is just (1). Thus the proof of Theorem 1 is terminated.
Further, by (7) and (8) we have

WE)= [1ude) = [F@)u(de)= [r(@)u(dz)
= [r@udn)= [r@pde)= [F@)u(da)

= [1ulde) =),

which gives (2).

Next, assume that T is ergodic. Take any set E ¢S of positive
measure. Since T is ergodic, 7(x, E') must be constant almost every-
where. Hence, by (8), #(x)=1 almost everywhere, so that we obtain
(3).

Conversely, assume that T is not ergodic. Then there exists an
invariant set E such that w(E)>0 and w(X—FE)>0. Since T""E=FE
and T %(X—E)=X—EFE, we have that T"xcE (n=1,2,...) for all
xeK and T"ee X—FE (n=1,2,.-.) for all xe X—FE, so that

r(x)=1 for all xc K
=0 for all xre X—F.
Since both £ and X—FE are of positive measures, (8) does not hold.
Thus the proof of Theorem 2 is terminated.
5. For any fixed set E ¢, we set
E={TE
J=0
Then, for xzeFE, there exists a positive integer n such that T xe¢E
and, for x¢E, there exists no positive integer n such that T xcE.
Hence, on modifying Theorems 1 and 2, we obtain

Theorem 3. For any set E e, the recurrence time r(x) is an
integrable function and

n—-1 ~
lim 1 I r(Tix)=1  for almost all xcE,

n»>0 N, j=0
=0  for almost all x¢ K,
and

[ r(@)utda)=p(E).
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