No. 9] 599

137. Some Boundedness Theorems of Sclutions of
Linear Differential Equations

By Shin-ichi TAKAHASHI
Department of Mathematics, Nagoya Institute of Technology,
Nagoya, Japan
(Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1958)

First we shall deal with an arbitrary solution x(¢) of a second-
order linear inhomogeneous equation
(1) & +p(t)a’ +q(t)x=1(¢)
where the primes denote differentiations with respect to the independ-
ent variable £ and p(¢), q(t) and f(t) are assumed real-valued, con-
tinuous on the interval I: ¢<t< o, ¢ being a constant. We shall
establish some boundedness theorems by a direct and simple method
(ef. [1]). Subsequently we shall proceed to the consideration of a
linear inhomogeneous system and prove an important estimate con-
cerning the solutions of the system. The boundedness theorems for
an n-th order linear inhomogeneous equation
(2) &+ py(E)r "L« - -+ (O =1(1)
where p,(t), - -+, p,(t) and f(t) are all assumed real-valued, continuous
on I, will then be derived as an immediate consequence of the estimate
mentioned above.

THEOREM 1. If there exists a continuous positive function A(t)
on I such that

(3) f " 20(8)+ X @)/A(2) | dE < oo
(4) Sy - lde< e
(5) [Tty s de< o,

then every solution of the equation (1) is bounded on I. But if

2p(t)A(t)+2'(t)=0 on I, them every solution of the equation (1) is

bounded on I provided that the conditions (4) and (5) are fulfilled.
For the proof of Theorem 1, we need the following lemma (ef.

[2]).

Lemma. If u(t), v(¢)=0, if ¢, is a positive constant, and if
u(t)gcl+ft uvdt
then ’
13
u(t)<c, exp (f vdt).

c
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Proof of THEOREM 1. We introduce the function
(6) E(t)=1+4(t)+"(t)/A@t)
defined on I. The expression (6) may be regarded as an extension of
“conjugate energy” x*(t)+'%(t)/q(t) associated with any solution w(t)
of the equation z”+q(t)x=0 (cf. [8]). Clearly, E(t)>0 on I and its
first derivative becomes
(7) E'(t)=—2pa+ 22?2242’ (1—q/2)+ 22" f/2
by virtue of the equation (1). Then we have
E@®)< |20+ 22| 2%2+2 | ax’ || 1—q/2| +2] &' || f]/2
é I2p—|—2'/2 l E’(t)+(2”2a:2+,2‘“2a;’2) I 1—(]/2 ' + lf‘ 1—1(21/2+2-1/2x/2)
<(|2p+2/2| +27V* | a—q |+ | £ ) E()
and integrating both sides between ¢ and ¢, we obtain

BOZEC)+ [ (1202121 +277 | 2=q| +27 | £ E(t)dt.

Hence an application of the lemma cited above yields
2} (t)< E(t)< E(c) exp

(8) <f|2p+2/zldt+f2 1/211——q|dt+fﬂ“’2|fldt)

Consequently the estlmate (8) and the conditions (8), (4), (6) lead at
once to the conclusion that every solution x(t) of the equation (1)
must be bounded on I. The proof of the first part of Theorem 1 is
thus completed. To prove the second part, it suffices to notice that
the relation (7) gives us the inequality
E'(t)=<2|x’ || 1—q/2] +2|2"|| f]/2

under the assumption 2p2+21'=0 on I

Now, putting i(f)=a¢>0, a being a constant, or A(t)=q(t), we
obtain the following boundedness theorems for the equation (1) as
special cases of Theorem 1.

THEOREM 2. If there exists a positive constant a such that

(9) [la—a®dt< e
and furthermore, if the conditions

(10) JRECIE =
(11) f @) | dt< oo

are satisfied, then every solution of the equation (1) is bounded on I

But if p(t)=0 on I, then every solution of the equation (1) is bounded

on I provided that the conditions (9) and (11) are fulfilled.
THEOREM 3. If q(t)>0 on I and if the conditions

(12) [T120)+0'®rat) | dt < oo
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(13) IO RGOS

are satisfied, then every solution of the equation (1) is bounded on I.
But of q(t)>0, 2p(t)q(®)+q'(t)=0 on I, then every solution of the equa-
tion (1) is bounded on I provided that the condition (13) is fulfilled.
Moreover, the following boundedness theorems concerning an
equation of the type
(14) (k(t)a') +9(t)x=1(2)
can be derived as special cases of Theorems 1 and 3.
THEOREM 4. Let both k(t) and g(t) be continuous functions and
k()30 on I. If there exists a positive constant a such that

(15) fwlf(lt—)—g(t)ldt<oo

and furthermore, if the condition (11) is satisfied, then every solu-
tion of the equation (14) is bounded on I. In particular, if k(t)=F0
on I and if the conditions

1) [Taylk@)| <o, [Tlo®)ldt<o, [T1AB]d1<0

are satisfied, then every solution of the equation (14) is bounded on I.
THEOREM 5. Let both k(t) and g(t) be continuous positive func-
tions on I. If the conditions

(17) [y 1 g dt< o

(18) [ tey21 £l dt< oo

are satisfied, then every solution of the equation (14) is bounded on
I. But if (kg)=0 on I, then every solution of the equation (14) is
bounded on I provided that the condition (18) is fulfilled.

The second part of Theorem 5 concerning the inhomogeneous
equation (14) is a generalization of a theorem due to Wintner [4]
and Leighton [5], which states that every solution of a self-adjoint
differential equation
(19) (k(t)x") +9(t)x=0
is bounded on I, if k(t), 9(t)>0 and if k(t)g(t) is nondecreasing on I.
On the other hand, it is easy to verify that the condition (17) is
certainly satisfied when k(t)g(t) is nonincreasing on I and has a posi-
tive lower bound, in which case the condition (18) may be replaced
by the condition (11).

We shall now propose to consider a linear inhomogeneous system

(20) =3 fa®n®+o(t) =12, m

where f(t), 4, k=1,2,.---,n and g,(t),t=1,2,.--,n are all assumed
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real-valued, continuous on the interval I: ¢<t< o, ¢ being a constant.
Here we introduce the function

(21) B(t)=1+43 st/ ()

defined on I, where all A,(t) are continuous positive functions on I.
Then we can find an estimate for E(t) in the following manner.
THEOREM 6. It holds on I

L,n 2
BO=BC) exp ( 35 [ 1 hfatdidii fu) dt

2 n t _ n t _
(22) +233 [1fu—uizt1dt+3) [3t1g.1dt),

Proof of THEOREM 6.
E(t)=3) 20,0272 —2 S) a2 2250
$=1 d=1
=ié Zwi2;2<kéfilcxk+gi>_2 é GV
=1 =1 t=1
= S f A 20, — 2 D) AT D) 9,4 2
i=1 k=1 i=1 i=1
1,n n
=i2<k(fik'2;2+fki'27:2)2ximk+2 ¢Z1 (fii_lélil)w%lfz
+3g,45% 20,
d=1
1, n
é%zizk | fir 224 fradi® | (a5 252 4% 2%%)
+2> | fio— 2025 | x§2;2+;} At g | A+a3272)
1, n n n
é(i% | 27 A fiet 225 s | +2iz=; | fis— LAt | +i2_1/2i—1 |9 I)E(t)
and integrating both sides between ¢ and ¢, we obtain
t/1,n n
BOSBE)+ [ (313 ufat 20 | +2 2| fum 2007 |

+3 4 0: ) B dt.
Hence an application of the lemma cited above yields the estimate (22).

One notes incidentally that the following boundedness theorem
concerning the solutions of the system (20) will be derived as a con-
sequence of the estimate (22) applied to the case: 1,=1,t=1,2, ..., n.

THEOREM 7. All solutions z,(t), i=1, 2, ---, n, of the linear in-
homogeneous system (20) are bounded on I provided that the conditions

fwlfzk+sz|dt<w7 fwlgzldt<°°y Ii’k:]-;z"",n

are fulfilled.

Furthermore, the n-th order linear inhomogeneous equation (2):
W+ py(B)a" P+ +p(Hr=12)
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may be converted into a system of the type (20) by means of the
substitutions

=%, =, =, ..., x,=zx"?P
and so it is not difficult to verify that the estimate (22) for the
equation (2) becomes

n—2 3 n—2 1
E(t)éE(C)eXp (2/ Zi—llz+1dt'|'z]‘/<'zz];llpn—z+lldt
(23) =1 t=1

+f|z,.-1 bl pzldt+2f|pl+z' 1|dt+fz || dv)

where

E(t)=1+ 3 (6" P/ 4(0).

Now, corresponding to particular forms of 2,(t), several bounded-
ness theorems for the equation (2) will be derived as corollaries of
the estimate (28). For instance, setting A,(t)=t"“"*-"%¢=1,2, .-,
we obtain the following theorem.

THEOREM 8. If the conditions

f“tk—wpk(t) ldt<oo, k=34, +--,n

o

Pl ® (3 )-1
f|t £ Do(t) | dt < oo, [Ipl(t) <2n 2)t-1| dt < oo,

c

",

[ 0 ldt< oo

are satisfied for some positive constant ¢, then the order relations
z™t)=0(t"™) for t—>oo0,m=0,1,2, -, n—1,n=2,
hold for every solutiom x(t) of the equation (2).
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