580 [Vol. 34,

132. (ER)-Integral of Radon-Stieltjes Type

By Hatsuo Okano

Osaka University

(Comm. by K. Kunugi, M.J.A., Nov. 12, 1958)

By the method of ranked spaces Prof. K. Kunugi constructed a new integral¹⁾ which we call (ER)-integral. The aim of this note is to study the theory of (ER)-integral of Radon-Stieltjes type on abstract measure spaces.

Let R be a set, \mathfrak{B} a σ -ring which consists of subsets of R and μ a measure defined on \mathfrak{B} . A step function

$$f(x) = \sum_{i=1}^{n} \alpha_i \chi_{E_i}(x)^{2}$$

defined on a μ -measurable set E is called integrable if $\mu(E_i)<+\infty$ for every index i for which $\alpha_i \neq 0$ and the integral of f(x) is defined by

$$\int_{m} f(x) d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(E_{i}).^{3}$$

Let \mathfrak{E}_{E} be the family of all integrable step functions defined on a μ -measurable set E.

It is well known that we obtain integrable functions in the sense of Radon-Stieltjes by completion of the space \mathfrak{E}_E normed by

$$||f|| = \int_{\mathbb{R}} |f(x)| d\mu.$$

Now, according to the method of Prof. K. Kunugi we shall introduce a rank to $\mathfrak{S}_{\scriptscriptstyle E}$ and get the definition of (ER)-integral of Radon-Stieltjes type by completion of the ranked space $\mathfrak{S}_{\scriptscriptstyle E}$. 51

1. Definitions and some properties. Let E be a μ -measurable set. For a non-negative integer n, a μ -measurable set F contained in E and an integrable step function f defined on E, V(F, n; f) denotes the family of all integrable step functions g(x) such that there exist two integrable step functions p(x) and r(x) which satisfy the following conditions:

¹⁾ K. Kunugi: Application de la méthode des espaces rangés à la théorie de l'intégration. I, Proc. Japan Acad., **32**, 215-220 (1956). T. Ikegami gave a definition of (*ER*)-integral relative to Haar measure. T. Ikegami: A note on the integration by the method of ranked spaces, Proc. Japan Acad., **34**, 16-21 (1958).

²⁾ $\chi_{E_i}(x)$ denotes the characteristic function of a μ -measurable set E_i and α_i is a real number.

³⁾ We set $0 \cdot \infty = 0$.

⁴⁾ See, for example, P. R. Halmos: Measure Theory, Chapter V, New York (1950).

⁵⁾ See K. Kunugi: Loc. cit. and K. Kunugi: Sur les espaces complets et régulièrement complets. I, II, Proc. Japan Acad., 30, 553-556, 912-916 (1954).

(1)
$$g(x)=f(x)+p(x)+r(x)$$
.

$$(2) r(x) = 0 if x \in F.$$

(3) We have
$$\int_{\mathbb{E}} |p(x)| d\mu < 2^{-n}.$$

(4) We have
$$|\int_{\mathbb{R}} r(x) \, d\mu \, | < 2^{-n}.$$

Let the class of neighbourhoods of f of rank n be the totality of V(F, n; f) such that

$$\mu(E-F)<2^{-n}$$

where F is a μ -measurable set contained in E.

Then \mathfrak{E}_E is a ranked space.

A fundamental sequence in the ranked space \mathfrak{E}_E can be regarded as a sequence $\{f_n, F_n; n=0, 1, 2, \cdots\}$ of pairs of integrable step functions $f_n(x)$ defined on E and μ -measurable sets F_n contained in E which satisfy the following conditions (1) and (2):

(1) i)
$$F_n \subseteq F_{n+1}$$
, for any n .

$$\lim_{n\to\infty}\mu(E-F_n)=0.$$

(2) There exist two sequences $p_n(x)$ and $r_n(x)$ of integrable step functions defined on E such that

i)
$$f_{n+1}(x) = f_n(x) + p_n(x) + r_n(x)$$
,

$$r_n(x) = 0 \quad \text{if} \quad x \in F_n,$$

iii)
$$\sum_{n=0}^{\infty} \int_{x_n} |p_n(x)| d\mu < +\infty$$

and

iv)
$$\sum_{n=0}^{\infty} |\int_{\mathbb{T}} r_n(x) d\mu| < +\infty.$$

Let $u=\{f_n,F_n\}$ be a fundamental sequence. Then $f_n(x)$ tends almost everywhere to a function f(x) on E. By identifying two functions different on a null-set the function f=f(x) is uniquely determined. We denote it by J(u). While, $\int_{\mathbb{Z}} f_n(x) d\mu$ is a Cauchy sequence of real numbers and, therefore, tends to a real number which is denoted by I(u).

For any n, J(u) is integrable on F_n in the sense of Radon-Stieltjes.

We shall consider the following property (P^*) for a fundamental sequence $u=\{f_n,F_n\}$:

(P*) (1) There exists a function $\phi(n)$ of $n(n=0, 1, 2, \cdots)$ such that

i)
$$\phi(n) > 0$$
,

ii)
$$\lim \phi(n) = 0$$

and

iii) if $\mu(A) \le m\mu(E-F_n)$ for some positive integer m, then we have

$$\int_{A} |f_n(x)| d\mu \leq m\phi(n).$$

(2) There exists a real number k (independent of n) such that $k\mu(E-F_{n+1}) \ge \mu(E-F_n)$

for any n.

If u_1 and u_2 are two fundamental sequences with (P^*) , then $J(u_1)=J(u_2)$ implies $I(u_1)=I(u_2)$. Hence, if, for a real valued function f=f(x), there exists a fundamental sequence u with (P^*) such that J(u)=f, then f(x) is called (ER)-integrable over E (with respect to μ) and the integral of f(x) over E, in symbol $(ER)\int_{\Gamma}f(x)\,d\mu$, is defined by

$$(ER)\int_{E} f(x) d\mu = I(u).$$

u is called a defining fundamental sequence of f.

If μ is the 1-demensional Lebesgue measure, then the integral just defined coincides with the one defined by Prof. K. Kunugi.

Our integral has the following properties.

Theorem 1. We have

$$(ER)\int_{\mathbb{R}} f(x) d\mu = \lim_{n \to \infty} (R) \int_{\mathbb{R}} f(x) d\mu.$$

Theorem 2. Let $u=\{f_n, F_n\}$ be a defining fundamental sequence of f(x). And let \mathfrak{B}_{F_n} be the σ -ring which consists of every μ -measurable set contained in F_n and \mathfrak{A} the ring generated by $\bigcup_{n=0}^{\infty} \mathfrak{B}_{F_n}$ and $\{E\}^{\tau}$. Then f(x) is (ER)-integrable over every set which belongs to \mathfrak{A} .

Theorem 3. Let f(x) be (ER)-integrable over E and F.

(1) If $E \cap F = 0$, then f(x) is (ER)-integrable over $E \cup F$ and we have $(ER) \int_{\mathbb{R}^n} f(x) \, d\mu = (ER) \int_{\mathbb{R}^n} f(x) \, d\mu + (ER) \int_{\mathbb{R}^n} f(x) \, d\mu.$

(2) If $E \subseteq F$, then f(x) is (ER)-integrable over F - E and we have $(ER) \int_{\mathbb{R}} f(x) d\mu = (ER) \int_{\mathbb{R}} f(x) d\mu - (ER) \int_{\mathbb{R}} f(x) d\mu.$

Theorem 4. Let f(x) and g(x) be (ER)-integrable functions over E and α and β real numbers. Then $\alpha f(x) + \beta g(x)$ is also (ER)-integrable over E and we have

$$(ER)\int_{E} (\alpha f(x) + \beta g(x)) d\mu = \alpha (ER)\int_{E} f(x) d\mu + \beta (ER)\int_{E} g(x) d\mu.$$

2. Integrable functions in the sense of Radon-Stieltjes. Rela-

⁶⁾ $(R) \int_{\mathbb{R}} f(x) d\mu$ denotes the Radon-Stieltjes integral of f(x) over F_n .

⁷⁾ $\{E\}$ denotes the set which consists of only one element E.

tions of Radon-Stieltjes integral and ours are showed in the following theorems.

Theorem 5. If f(x) is integrable over E in the sense of Radon-Stieltjes, then f(x) is (ER)-integrable over E and we have

$$(R)\int_{\mathbb{R}} f(x) d\mu = (ER)\int_{\mathbb{R}} f(x) d\mu.$$

The following conditions are equivalent.

- (1) f(x) is integrable over E in the sense of Radon-Stielties.
- (2) |f(x)| is (ER)-integrable over E.
- (3) f(x) is (ER)-integrable over every μ -measurable set contained in E.
- 3. A theorem of Radon-Nikodym type. In this section we assume that $R \in \mathfrak{B}$ and $\mu(R) < +\infty$. It is well known that an absolutely continuous σ -additive finite set-function defined on \mathfrak{B} is represented by indefinite Radon-Stieltjes integrals. Now we propose a condition such that a set-function can be represented by our integral.

Theorem 7. Let F_n , $n=0, 1, 2, \dots$, be a sequence of monotone increasing μ -measurable sets such that

$$\lim_{n\to\infty}\mu(F_n)=\mu(R)$$

and

$$k\mu(R\!-\!F_{n+1})\!\geq\!\mu(R\!-\!F_n)$$

for some k independent of n. And let ν be a finitely additive finite set-function defined on the ring \mathfrak{A} generated by $\bigcup_{n=0}^{\infty} \mathfrak{B}_{F_n}$ and $\{R\}$. If ν satisfies the following conditions:

(1)
$$\nu(R) = \lim_{n \to \infty} \nu(F_n).$$
(2) For any n , ν is σ -additive on \mathfrak{B}_{F_n} .

$$\sum_{n=0}^{\infty} \left| \nu(F_{n+1} - F_n) \right| < + \infty.$$

There exists a positive function $\phi(n)$ of n $(n=0,1,2,\cdots)$ such (4)that

$$\lim_{n\to\infty}\phi(n)=0$$

and

ii) if $A \subseteq F_n$ and $\mu(A) \le m\mu(R - F_n)$ for some positive integer m, then we have $|\nu|(A) < m\phi(n)$; then there exists a function f(x)which is (ER)-integrable over every set which belongs to $\mathfrak A$ and we have

$$\nu(A) = (ER) \int_A f(x) \, d\mu$$

for every $A \in \mathfrak{A}$.

⁸⁾ $|\nu|$ denotes the total variation of ν .

If ν is an absolutely continuous σ -additive finite set-function defined on \mathfrak{B} , then, by setting $F_n = R$, we have $\mathfrak{A} = \mathfrak{B}$ and, therefore, f(x) is integrable on R in the sense of Radon-Stieltjes from Theorem 6. Hence the above theorem is an extension of the Radon-Nikodym's theorem from Theorem 5.