153. Homomorphisms of a Left Simple Semigroup onto a Group

By Tôru SAITÔ

Tokyo Gakugei University (Comm. by K. SHODA, M.J.A., Dec. 12, 1958)

Cohn, in his paper [1], defined d-semigroups as semigroups S satisfying the following conditions:

(1) if $a, b \in S$, then a = xb for some $x \in S$,

(2) if $a, b \in S$, then either a=b or a=by or b=ay for some $y \in S$,

(3) S contains no idempotent,

and then he characterized the kernels of homomorphisms of a d-semigroup onto a group.

In this note, we show that a similar result holds for left simple semigroups, that is, semigroups satisfying the condition (1) only.

In this note, S denotes always a left simple semigroup.

A subsemigroup T of S is said to be *left unitary* in S, if T contains, with any a, b, all solutions x in S of the equation ax=b. (This definition is due to Dubreil [2]. Cohn uses the word 'closed' in the sense of 'right and left unitary'.) Also, a subsemigroup T of S is said to be *normal* in S, if $xT \subseteq Tx$ for any $x \in S$.

In S, we define a set U by

 $U = \{x \in S; xa = a \text{ for some } a \in S\}.$

U is non-empty, since S satisfies the condition (1). Also, we define a set V by

 $V = \{x \in S; ux = u' \text{ for some } u, u' \in U\}.$

Lemma 1. $U \subseteq V$.

Proof. If $u \in U$, there exists an element $a \in S$ such that ua = a. Then we have also $u^2a = ua = a$, and so $u^2 \in U$. But u is a solution of the equation $ux = u^2$ and so we have $u \in V$.

By Lemma 1, V is also non-empty.

Now we consider the subsemigroup I generated by the set V, and call it the *core* of S. Thus every element of the core I can be represented by a finite product of elements in V.

Lemma 2. Given $x \in S$ and $v \in V$, there exists an element $v' \in V$ such that xv = v'x.

Proof. By the condition (1), there exists an element $v' \in S$ such that xv = v'x. Since $v \in V$, there exist two elements $u_1, u_2 \in U$ such that $u_1v = u_2$. Then, since $u_1, u_2 \in U$, there exist elements $a, b \in S$ such that $u_1a = a$ and $u_2b = b$. Using the condition (1) again, we can consider an element $s \in S$ such that $x = su_1$, and then an element $p \in S$ such that

 $su_2 = ps$. Furthermore, we can consider an element $q \in S$ such that qv' = p. Then we have

$$p(sb) = su_2b = sb$$
,

 $q(v'sa) = psa = su_2a = su_1va = xva = v'xa = v'su_1a = v'sa.$

Therefore we have $p, q \in U$. Hence, by qv' = p, we have $v' \in V$.

Lemma 3. I is a normal subsemigroup.

Proof. Suppose that $i \in I$ and $x \in S$. Then i can be represented by the form

$$z = v_1 v_2 \cdots v_n \qquad v_1, v_2, \cdots, v_n \in V.$$

By Lemma 2, there exist n elements $w_1, w_2, \dots, w_n \in V$ such that $xv_1 = w_1x, xv_2 = w_2x, \dots, xv_n = w_nx$. Then we have

 $xi = xv_1v_2\cdots v_n = w_1xv_2\cdots v_n = w_1w_2x\cdots v_n = \cdots$ $= w_1w_2\cdots w_nx.$

Therefore, since $w_1 w_2 \cdots w_n \in I$, we have $xi \in Ix$. Hence we have $xI \subseteq Ix$ for any $x \in S$.

Lemma 4. If $v \in V$, $i \in I$ and vx=i, then we have $x \in I$.

Proof. Since $v \in V$, there exist two elements $u_1, u_2 \in U$ such that $u_1v=u_2$. And then, by the condition (1), there exists an element $p \in S$ such that $p(u_2x)=x$. Since $(pu_2)x=x$, we have $pu_2 \in U$, and so $p \in V$. Now we have

$$x = pu_2 x = pu_1 v x = pu_1 i.$$

Therefore, x, with $i \in I$, can be represented by a finite product of elements in V, since $p \in V$ and $u_1 \in U \subseteq V$. Hence we have $x \in I$.

Lemma 5. I is a left unitary subsemigroup of S.

Proof. Suppose that $i \in I$, $j \in I$ and ix=j. Then i can be represented by the form

 $i=v_1v_2\cdots v_n$ $v_1, v_2, \cdots, v_n \in V.$

We show $x \in I$ by induction with respect to n, the number of terms of the above expression. If n=1, then i itself is an element of V, and so, by Lemma 4, we have $x \in I$. Now we consider the general case. We set

 $v_2 \cdots v_n x = x'.$

Then we have

$$v_1x = v_1v_2\cdots v_nx = ix = j.$$

Therefore, by Lemma 4, we have $v_2 \cdots v_n x = x' \in I$, and hence, by the induction hypothesis, we have $x \in I$.

By Lemmas 3 and 5 we obtain the following

Theorem 1. The core I is a normal and left unitary subsemigroup of S.

Now we consider a homomorphism of a left simple semigroup S onto a group G. Then we have the following

Theorem 2. Let θ be a homomorphism of S onto a group G with unit-element 1. Then the kernel $\theta^{-1}(1)$ is a normal and left unitary

subsemigroup of S containing the core I.

Proof. If $x, y \in \theta^{-1}(1)$, then $\theta(xy) = \theta(x)\theta(y) = 1$, and so $xy \in \theta^{-1}(1)$. Hence $\theta^{-1}(1)$ is a subsemigroup. If $x, y \in \theta^{-1}(1)$ and xz = y, then we have $1 = \theta(y) = \theta(xz) = \theta(x)\theta(z) = \theta(z)$, and so we have $z \in \theta^{-1}(1)$. Hence $\theta^{-1}(1)$ is left unitary. Let t be any element of S. For $x \in \theta^{-1}(1)$, there exists an element $s \in S$ such that tx = st. Then we have $\theta(t) = \theta(t)\theta(x) = \theta(tx) = \theta(st) = \theta(s)\theta(t)$ and so $\theta(s) = 1$, that is, $s \in \theta^{-1}(1)$. Hence $t\theta^{-1}(1) \subseteq \theta^{-1}(1)t$, and so $\theta^{-1}(1)$ is normal. If $u \in U$, then there exists an element $a \in S$ such that ua = a. Then we have $\theta(a) = \theta(ua) = \theta(u)\theta(a)$ and so $\theta(u) = 1$. Hence U is contained in $\theta^{-1}(1)$. If $v \in V$, then there exist two elements $u_1, u_2 \in U$ such that $u_1v = u_2$. But u_1 and u_2 , being elements of U, are elements of $\theta^{-1}(1)$ is a subsemigroup which contains V, and hence $\theta^{-1}(1)$ contains the core I.

Conversely, let us consider a normal and left unitary subsemigroup N containing the core I.

Lemma 6. N is right unitary, that is, $a, b \in N$ and xa=b imply $x \in N$.

Proof. By the normality of N, we have $xa \in xN \subseteq Nx$. Therefore there exists an element $c \in N$ such that xa = cx. And so we have cx = b. Since N is left unitary, this equality implies $x \in N$.

Lemma 7. $a \in Na$ for any $a \in S$.

Proof. By the condition (1) there exists an element $u \in S$ such that ua=a. By the definition of the set U, we have $u \in U$. But, since $U \subseteq V \subseteq I \subseteq N$, we have $u \in N$. Hence $a=ua \in Na$.

Lemma 8. N = Nx if and only if $x \in N$.

Proof. Suppose that $x \in N$. By the condition (1), for $n \in N$ there exists an element $m \in S$ such that n = mx. By Lemma 6, this element m belongs to N. Therefore we have $N \subseteq Nx$. The inverse inclusion $Nx \subseteq N$ holds also, since N is a subsemigroup. Hence we have N = Nx. Conversely, suppose that N = Nx. Then, for $n \in N$, there exists an element $m \in N$ such that n = mx. Then we have $x \in N$, since N is left unitary.

Lemma 9. If $Na \frown Nb \neq \phi$, then Na = Nb.

Proof. Suppose that $c \in Na \cap Nb$. Then there exist two elements $n_1, n_2 \in N$ such that $c = n_1a = n_2b$. Hence, by Lemma 8, we have $Na = Nn_1a = Nc = Nn_2b = Nb$.

By Lemmas 7 and 9, the different sets Na define a partition of S. The totality of these different sets Na is denoted by \Re .

Now, we define a composition \circ in \Re as follows:

$$(Na)\circ(Nb) = Nab.$$

By assumption, N is a normal subsemigroup and so

 $NaNb \subseteq NNab \subseteq Nab.$

666

Therefore the product $(Na)\circ(Nb)$ can be regarded as the class containing NaNb, and hence this product is uniquely determined irrespective of the choice of the elements a and b. Moreover

$$Na \circ Nb) \circ Nc = Nabc = Na \circ (Nb \circ Nc)$$

and hence \mathfrak{N} is a semigroup with respect to the composition

Lemma 10. The semigroup \Re is a group.

Proof. By Lemma 8, N is an element of \mathfrak{N} . Let Na be an element of \mathfrak{N} . Then there exists an element $u \in S$ such that ua = a. The element u belongs to U and so belongs to N. Therefore, by Lemma 8, we have N = Nu, and so

 $N \circ Na = Nu \circ Na = Nua = Na$.

Hence N is a left unit-element of the semigroup \mathfrak{N} . Moreover, there exists an element $b \in S$ such that ba = u. And so

 $Nb \circ Na = Nba = Nu = N.$

Hence \Re is a group with unit element N (cf. Zassenhaus [3]).

Now we consider a mapping

 $\theta: a \to Na$

of S onto \Re . θ is evidently a homomorphism.

Lemma 11. The kernel of the homomorphism θ is N.

Proof. Let K be the kernel of θ . By definition, $\theta(a) = Na$. Since N is the unit-element of the group \mathfrak{N} , $a \in K$ is equivalent to Na = N. But, by Lemma 8, the latter equality is equivalent to $a \in N$. Hence we have K = N.

By Lemmas 10 and 11, we obtain the following

Theorem 3. If N is a normal and left unitary subsemigroup of S containing the core I, then there exists a homomorphism θ of S onto a group such that the kernel of θ is N.

References

- P. M. Cohn: On the structure of sesquialteral division semi-groups, Proc. London Math. Soc., 8, 466-480 (1958).
- [2] M. P. Dubreil: Contribution à la théorie des demi-groupes, Mém. Acad. Sci., 63, 1-52 (1941).
- [3] H. Zassenhaus: Lehrbuch der Gruppentheorie, Leibzig (1937).