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Cohn, in his paper [1], defined d-semigroups as semigroups S

satisfying the following conditions:

(1) if a,beS, then a=xb for some xzeS,

(2) if a,beS, then either a=b or a=by or b=ay for some yeS,
(8) S contains no idempotent,

and then he characterized the kernels of homomorphisms of a d-semi-
group onto a group.

In this note, we show that a similar result holds for left simple
semigroups, that is, semigroups satisfying the condition (1) only.

In this note, S denotes always a left simple semigroup.

A subsemigroup 7' of S is said to be left unitary in S, if T
contains, with any a, b, all solutions # in S of the equation ax=b.
(This definition is due to Dubreil [2]. Cohn uses the word ‘closed’
in the sense of ‘right and left unitary’.) Also, a subsemigroup 7T of
S is said to be normal in S, if 2T < Tx for any x€S.

In S, we define a set U by

U={xeS; za=a for some acS}.
U is non-empty, since S satisfies the condition (1). Also, we define
a set V by
V={xeS; ux=u" for some u,u € U}.

Lemma 1. UCV.

Proof. If weU, there exists an element aeS such that ua=a.
Then we have also u?a=wua=a, and so u*cU. But u is a solution of
the equation ux=u? and so we have ueV.

By Lemma 1, V is also non-empty.

Now we consider the subsemigroup I generated by the set V,
and call it the core of S. Thus every element of the core I can be
represented by a finite product of elements in V.

Lemma 2. Given xeS and veV, there exists an element v eV
such that xv=v'x.

Proof. By the condition (1), there exists an element v'€S such
that xv=v'2. Since v ¢ V, there exist two elements u,, u, € U such that
u,v=1u,. Then, since u,, u, € U, there exist elements a,beS such that
w,0=a and u,b=>b. Using the condition (1) again, we can consider
an element seS such that x=su,, and then an element peS such that
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su,=ps. Furthermore, we can consider an element g¢S such that
qv'=p. Then we have
p(sb)=su.b=sb,
g(v'sa) = psa=su,a=su,va=xva="v"ra=v'su,a=v'sa.

Therefore we have p,qeU. Hence, by qv'=p, we have v'¢ V.

Lemma 3. I is a normal subsemigroup.

Proof. Suppose that 7¢I and x€S. Then 7 can be represented
by the form

L=V Vs + *V, Vy, Vgyo +, v, € V.
By Lemma 2, there exist » elements w,, w,,---,w,€V such that
TV, =W, TV,=Wo, -+, XV,=wW,X. Then we have

TL=RV Ve + UV, =W, XVg» * UV, =W W+ + + U=+ *
=W, Wy + - W,
Therefore, since w,w,- - -w,€I, we have xicIxz. Hence we have xS Ix
for any xzeS.

Lemma 4. If veV, iel and vr=1, then we have xel.

Proof. Since veV, there exist two elements u,, u, ¢ U such that
u,v=u,. And then, by the condition (1), there exists an element peS
such that p(u,x)=2. Since (pu,)x=x, we have pu,c U, and so peV.
Now we have

L= DU = PUVL = PU,1.
Therefore, x, with 7¢I, can be represented by a finite product of
elements in V, since peV and u, e USV. Hence we have xecl.

Lemma 5. I s a left unitary subsemigroup of S.

Proof. Suppose that i¢l, jeI and ix=j. Then ¢ can be rep-
resented by the form

1=V, Vg Vgy+ o+, ¥, € V.,
We show x¢I by induction with respect to », the number of terms
of the above expression. If n=1, then ¢ itself is an element of V,
and so, by Lemma 4, we have zcl. Now we consider the general
case. We set
Vyr e o0, = &,
Then we have
VX =0V » + V,X=1C=]1.

Therefore, by Lemma 4, we have v,---v,2=x2"¢I, and hence, by the
induction hypothesis, we have xel.

By Lemmas 3 and 5 we obtain the following

Theorem 1. The core I is a normal and left unitary subsemi-
group of S.

Now we consider a homomorphism of a left simple semigroup S
onto a group G. Then we have the following

Theorem 2. Let 0 be a homomorphism of S onto a group G with
unit-element 1. Then the kernel 6-'(1) is a normal and left unitary
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subsemigroup of S containing the core I.

Proof. If x,yec6-*(1), then O(xy)=0(x)6(y)=1, and so zyech~'(1).
Hence 0-'(1) is a subsemigroup. If z,yef (1) and xz=y, then we
have 1=0(y)=0(xz)=0(x)0(z)=0(z), and so we have z€f~*(1). Hence
07'(1) is left unitary. Let ¢ be any element of S. For zef-'(1), there
exists an element seS such that tx=st. Then we have 6(t)=46(t)6(x)
=0(tx)=0(st)=0(s)d(t) and so 6(s)=1, that is, sc6-'(1). Hence t4-*(1)
S 67'(1)t, and so 6°(1) is normal. If % e U, then there exists an
element aeS such that ua=a. Then we have 6(a)=60(ua)=0(u)dé(a)
and so f(u)=1. Hence U is contained in 6-*(1). If veV, then there
exist two elements u,, u, € U such that u,v=wu,. But u, and w,, being
elements of U, are elements of 6-'(1), and so we have vef-'(1) since
6-'(1) is left unitary. Therefore 6-*(1) is a subsemigroup which contains
V, and hence 6-'(1) contains the core I.

Conversely, let us consider a normal and left unitary subsemigroup
N containing the core I.

Lemma 6. N is right unitary, that is, a,be N and xa=>b imply
xeN,

Proof. By the normality of N, we have xacxNZ Nx. Therefore
there exists an element ce N such that xa=cx. And so we have cx=b.
Since N is left unitary, this equality implies x<N.

Lemma 7. acNa for any acS.

Proof. By the condition (1) there exists an element u¢S such
that wa=a. By the definition of the set U, we have ucU. But,
since US VIS N, we have uecN. Hence a=wuacNa.

Lemma 8. N=Nz if and only if xeN.

Proof. Suppose that xeN. By the condition (1), for ne N there
exists an element meS such that n=mx. By Lemma 6, this element
m belongs to N. Therefore we have N Nx. The inverse inclusion
Nz < N holds also, since N is a subsemigroup. Hence we have N =Nz.
Conversely, suppose that N=Nz. Then, for necN, there exists an
element meN such that n=mx. Then we have zcN, since N is left
unitary.

Lemma 9. If Na~Nb=¢, then Na=Nb.

Proof. Suppose that ce No~Nb. Then there exist two elements
%y, N2 €N such that c=mn,a=n,b. Hence, by Lemma 8, we have Na
=Nn,a=Nc=Nn,b=Nb.

By Lemmas 7 and 9, the different sets Na define a partition of
S. The totality of these different sets Na is denoted by R.

Now, we define a composition ° in R as follows:

(Na)°(Nb) = Nab.
By assumption, N is a normal subsemigroup and so
NaNb<= NNab < Nab.
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Therefore the product (Na)°(Nb) can be regarded as the class contain-

ing NaNb, and hence this product is uniquely determined irrespective

of the choice of the elements a and b. Moreover
(NaeNb)e Nc= Nabc= Na°(NbeNc)

and hence N is a semigroup with respect to the composition

Lemma 10. The semigroup N is a group.

Proof. By Lemma 8, N is an element of . Let Na be an
element of N. Then there exists an element ueS such that uwa=a.
The element % belongs to U and so belongs to N. Therefore, by
Lemma 8, we have N=Nu, and so

NoNa=NucNa=Nua=Na.
Hence N is a left unit-element of the semigroup . Moreover, there
exists an element b¢S such that ba=u. And so

NbeNa=Nba=Nu=N.
Hence M is a group with unit element N (cf. Zassenhaus [3]).
Now we consider a mapping
0:a—> Na

of S onto . @ is evidently a homomorphism.

Lemma 11. The kernel of the homomorphism 6 is N.

Proof. Let K be the kernel of §. By definition, (a)=Na. Since
N is the unit-element of the group N, aeK is equivalent to Na=N.
But, by Lemma 8, the latter equality is equivalent to acN. Hence
we have K=N.

By Lemmas 10 and 11, we obtain the following

Theorem. 3. If N is a normal and left unitary subsemigroup
of S containing the core I, then there exists a homomorphism 6 of
S onto a group such that the kernel of 6 is N.
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