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17. Convergence Concepts in Semi.ordered Linear Spaces. II

By Hidegor6 NAKANO
Hokkaido University

(Comm. by K. KUNUGI, M.J.A., Feb. 12, 1959)

In the part I *) we discussed the standard modificators in the case
where R is super-universally continuous, and we obtained Theorems 3
and 4. In the sequel, these theorems will be extended to more general
cases which are essentially important in the theory of semi-ordered
linear spaces.

An operator is said to be reducible, if (Pa)-Pa (--0, 1, 2,...)
for every projection operator P on R. A modificator A is said to be
reducible, if every operator of A is reducible. All sub., loc. and ind.
operators are obviously reducible, and hence S, L, I and all standard
modificators are reducible. We see easily that AB and AoB are reducible,
if both A and B are reducible. Every reducible modificator commutes
evidently all loc. operators by definition.

A semi-ordered linear space R is said to be locally super-univer-
sally continuous, if R is continuous and we can find a system of pro-
jectors p ( e 1) such that [J p 1 and [pR is super-universally

continuous for all 2 e/.
Lemma 5. If R is locally super-universally continuous, then we

have
ALSB - LASLBfor every two reducible modificators A and B.

Proof. Let _pJ (2 e A) be a system of projectors such that

1 and all [pR (2 e A) are super-universally continuous. Recalling
Lemma 4, we have ALSB-ASLB in [pJR for every 2e.4. Thus we
have in R

ALSB -LALSB LASLB.
Lemma 6. If R is locally super-universally continuous, then

(LoS)(LoS)SLS.
Proof. As LoSLS by (2), we have by (3)

(LoS)(LoS)(LoS)LS.
We suppose ao-(LoS)LS-lim a. Then, by virture of Theorem 1, we

can find 0 L and (R)0 e S such that
a LS-lim a for all e 0, ’ e (R)0.

As R is locally super-universally continuous, we can suppose here that
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[p]R is super-universally continuous for every IEp ego. Then we have
by Lemma 4

a LoS-lim a for all e 90, (R)0,

and hence ao-(LoS)(LoS)-lim a. Thus we have (LoS)(LoS)-(LoS)LS
by definition. We conclude therefore (LoS)(LoS).(LoS)LS. On the
other hand we have by (2), (3), (4)

SLS-SLLS(LoS)LSLo(SLS)-4SLS.
A modificator is said to be simple, if it is composed from S, L, I

and (LOS) only by product. Simple modificators are obviously standard.
It is so complicated to discuss standard modificators in general. Thus
we consider here only simple modificators.

Theorem 5. If R is locally super-universally continuous, then
every simple modificatov is equivalent to one of

LSL..ISLS ..ISL ..i L S ..i -0Proof. In general we have
(17) (LoS)I,.,.I(LoS)....SL.
Because we have obviously

(LoS)I--LoSoI=- Lo(SI) (SI)oL,
and by (12), (6), (7), (14)

SLy.. SI.-(SI)oLSIL, SL
and furthermore by (6), (7), (16)

SL SIIS-I(LoS)-I(SoL) ISL.
Here we have
(18) ISL SL.
Because we have by Lemma 3, (12), (16), (11)

SL ISLISI,IIS ISSI..,.SL.
As we have by (7), (4), Lemma 3

LS-(LS)oLL(SoL)-L(LoS)LLS=LS,
LSSo(LS) (SoL)S --(LoS)SLSS=LS,

LS (LS)oS LSS-LS,
we obtain
(19) L(LoS)..(LoS)S.Lo(LS).(LS)oL.So(LS).(LS)oS.LS.

As we have by (7), (4), Lemma 3
SLLo(SL)(LoS)L--(SoL)LSLL-- SL,
SL(SL)oS S(LoS)-S(SoL)SSL-SL,

SLSo(SL)SSL--SL,
we obtain
(20) S(LoS)-.(LoS)L.Lo(SL).(SL)oL.So(SL)-(SL)oS,SL.

Now we suppose that R is locally super-universally continuous.
Putting A-S, B-O in Lemma 5, we obtain

SLS}-LSSL-LSL.
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Thus we have by (7) and Lemma 3
LS LoS-O.LSLSLS-SL

We need only to prove that for each one C of these modificators, each
one of LC, SC, IC, (LoS)C also is equivalent to one of them.

For C=LSL, we have obviously LLSL=LSL by (9). Putting
A-=S, B--L in Lemma 5, we obtain by Lemma 3

LSL}-So(LSL) SLSL LSSLL LSL,
and hence SLSL..LSL. Putting A--I, B--L in Lemma 5, we obtain
by (18)

.LSL-ILSL LISLL--LISLLSL,
and hence ILSLLSL. As LSL is regular by Lemma 3, we also have

LSL}-(LoS)LSL LSLSL L(SLSL)LLSL LSL
and hence (LoS)LSL-.LSL.

For C=SLS, putting A--LS, B--O in Lemma 5, we obtain by (7)
LSL LSLS-LLSSL LSL,

and hence LSLS..LSL. Putting A--IS, B-O in Lemma 5, we obtain
by (lS)

ISLS LISSL--LISL.LSL.
On the other hand we have by (2), (12)

ISLSIo(SLS)-SLSI.SLSL..LSL.
Thus we have ISLS..LSL. As we have by (2), (4)

LSLS LSSLS(LoS)SLSSo(LSLS)LSLS,
we also obtain (LoS)SLS..LSL.

For C--SL, we see easily by (2), (4), (18)
LC.(LoS)C,LSL, IC..SCC.

For C-LS, we see easily by (2), (4)
SC.(LoS)CSLS, LCC.

Putting A--I, B--O in Lemma 5, we obtain by (18)
ILS LISL LSL.

On the other hand we have by (2), (12), (16)
ILS(IoL)S=LISLSI.LSL.

Thus we obtain IC.LSL.
For C-LoS, we have obviously by (17), (19), (20), Lemma 6

LC.LS, SC.,ICSL, (LoS)C..SLS.
For C--L or S, we need not discuss, because it is trivial by (19), (20).

Theorem 6. If R is locally super-universally continuous and
complete, then every standard modificator is equivalent to one of

LSSL-O.
Proof. Let [p (2 1) be a system of projectors such that [_J

=1 and [pR is super-universally continuous for all 2e. As
in [p_R, we have SL..S in [pR for every 2et. Thus we have
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LSLLS in R. Therefore we conclude LSL.,SLS.LS by Theorem 5.
If ao-SL-lim a, then we can find (R)eS by definition such that

a=L-lim a for every e (R).

As L.-O in [pR, we obtain hence
(EP] EPic0)-lim (EP] EP]a) or every .ae(R) A, peR.

Thus, putting -{pp" ,e_/l, peR}, we have eL and
a0-- lim a for

and hence co-LoS-lira a by definition. Thus we have SL>-(LoS), and

consequently SLy(LoS)by (2). Therefore we conclude by Theorem 5
that every simple modificator is equivalent to one of

Now we can prove that every standard modificator is equivalent to one

of them. For this, we need only to show that for every pair C, C of
them, CoC. is equivalent to one of them. First of all, we have LoS,.,SL,
as proved just above. By virtue of (19) and (20), we have obviously

Lo(LS),-.,(LS)oL,-..(LS)oS ,,.,So(LS),.LS,
Lo(SL)..,.,(SL)oL.-,..(SL)oS.-So(SL).-.,SL.

We also have by (4), (2), Lemma 3
SL>-(SL)o(SL)S(Lo(SL))- S((SL)oL)>SSLL--SL,

LS >-(LS)o(SL)>LSSL--LSL ,.-..LS,
LS ..(SL)o(LS)>SLLS-- SLS..,.,LS,
LS >-(LS)o(LS).>=LSLS,.-.,LLS LS,

and hence (SL)o(SL)SL, (LS)o(SL).-.(SL)o(LS),,..(LS)o(LS).-.LS.
Example 1. Let (R) be a totally additive set class on a space S;

re(E) (E e(R)) a totally additive measure; and Ro the totality of measur-
able functions on S. For , eR0 we define (>, if

re{x: (x)<(x), x E}--0 for re(E)
that is, (x)>(x) almost everywhere in E for re(E)< +. Then we
see easily that R0 constitutes a locally super-universally continuous,
complete, semi-ordered linear space. Let R be the set of all such
measurable functions on S that we can find a sequence of sets E
with m(E.)<A- (,=1,2,...) for which x-E for all ,--1,2,...
implies (x)=0. R,. is obviously a semi-normal manifold of Ro and we
see easily that R is Super-universally continuous and complete. We
denote by R an arbitrary semi-normal manifold of R0. R is obviously
locally super-universally continuous.

There are two well-known convergence concepts in R, that is, the
point convergence and the measure convergence. A sequence R
(,-1, 2,...) is said to be point convergent to 0, if lira ,(x)--9o(X)
almost everywhere in E for re(E) < + o. A sequence R (- 1, 2,
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..) is said to be measure convergent to 90, if
limm[x: [.(x)--0(x)[<, xE}--O for >0, m(E)<+.

We can prove easily: the point convergence is equivalent to L-con-
vergence in Ro, O-convergence in R, and L-convergence in R; the
measure convergence is equivalent to LS-convergence in Ro, S-con-
vergence in R, and LSL-convergence in R.

Example 2. Let M be the so-called M-space on the closed interval
[0, 1, that is, M consists of all bounded measurable functions on [0,
and is defined as (x)(x) almost everywhere in 0, 1 for the
Lebesgue measure. M is super-universally continuous. For each pair
of natural numbers Z,, we denote by Zc.) the characteristic function

of the closed interval -/--1 /-. As the set of all pairs (,)is

countable, we can consider {Z:,.)] a sequence. Then we have obviously

lim Z(,.)(x)- 1, lim

for every point in 0, 1. For a sub. operator , if is con-

then lim ZZ.(x)--0 except for x-lim ([. Thus lim ZZ.--0vergent,

in M, because {Z.} is bounded. Therefore we have
S-lim Zc.,) O.

We have obviously for every point x in [0, 1
iim .Z.,(x)- + , lim Z.,(x)-- O.

For a sub. operator , if is convergent, then lim

except for x--lim and hence

L-lim (,Z(,.) 0

but not O-convergent, because {(,Z(,..)}. is not bounded in M. Thus
SL-lim ,Z(,.. 0,

but {,Z(,.} is not LS-convergent.
Let 0 be the totality of sub. operators. We denote by R the set

of all mappings from 0 into M. For each x eR, denoting by x() the
image of e0 by x, we define ax+fiy for x, y eR as

(ax+ fly)() ax()+ ,y() for all e 0,
and xy as x()y() for all e0. Then we see easily that R is
universally continuous and locally super-universally continuous, and for
a sequence {x}a we have lim x.--0 in R if and only if lim x()--0
in M for all e0.

We can find uniquely a sequence ueR (,-1, 2,...)such that for
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every sub. operator {/,/,... we have
{u()}--{Z(,.)}, u()--0 for , p, (g--- 1, 2,...).

As to this sequence {u}l, we see easily that LS-lim u--O but {u}
is not SL-convergent; LSL-lim ,u’-O but {,u} is not SLS-convergent.

We also can find uniquely a sequence veR (,-1, 2,...) such that
{v()}-{Z,.} for all (R)0.

As to this sequence {v}l we have S-lim v--0, SL-lim ,v--0 in R but

{,v}> is not LS-convergent. We see easily furthermore that
SLS-lim (u+,v) O,

but {uW,v} is neither LS-nor SL-convergent.


