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By Hidegor6 NAKANO
Hokkaido University
(Comm. by K. KuNUGI, M.J.A., Feb. 12, 1959)

In the part I* we discussed the standard modificators in the case
where R is super-universally continuous, and we obtained Theorems 3
and 4. In the sequel, these theorems will be extended to more general
cases which are essentially important in the theory of semi-ordered
linear spaces.

An operator « is said to be reducible, if (Pa,)*=Pat (v=0,1,2,--")
for every projection operator P on R. A modificator A is said to be
reducible, if every operator of A is reducible. All sub., loc. and ind.
operators are obviously reducible, and hence S, L, I and all standard
modificators are reducible. We see easily that AB and A-B are reducible,
if both A and B are reducible. Every reducible modificator commutes
evidently all loc. operators by definition.

A semi-ordered linear space R is said to be locally super-univer-
sally continuous, if R is continuous and we can find a system of pro-
jectors [p,] (1€ 4) such that AU [p,]=1 and [p,]R is super-universally
continuous for all 2¢4. =

Lemma 5. If R is locally super-universally continuous, then we
have

ALSB > LASLB
for every two reducible modificators A and B.
Proof. Let [p,] (1€4) be a system of projectors such that a"éj,,[p‘]

=1 and all [p,]R (1€4) are super-universally continuous. Recalling
Lemma 4, we have ALSB>ASLB in [p,]R for every i1¢4. Thus we
have in R
ALSB>LALSB >LASLB.
Lemma 6. If R is locally super-universally continuous, then
(LoS)(L°S)~SLS.
Proof. As L°oS=LS by (2), we have by (3)
(LeS)(LeS)=(LeS)LS.

We suppose a,=(L°S)LS-lim a,. Then, by virture of Theorem 1, we

v-»o0

can find £,eL and S,¢S such that
o =LS-lim o!* for all [, 3¢S,

y=roc

As R is locally super-universally continuous, we can suppose here that

*#> H. Nakano and M. Sasaki: Convergence concepts in semi-ordered linear spaces.
I, Proc. Japan Acad., 35, no. 1 (1959).
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[P]R is super-universally continuous for every I[[p]€%, Then we have
by Lemma 4

af=LoS-lima® for all [e8, 8¢S,

and hence a,=(LoS)(LoS)-lim a,. Thus we have (L°S)(L°S)<(L°S)LS
by definition. We conclude therefore (LoS)(LoS)~ (L°S)LS. On the
other hand we have by (2), (3), (4)

SLS=SLLS <(L°S)LS <L-(SLS)<SLS.

A modificator is said to be simple, if it is composed from S, L, I
and (Le°S) only by product. Simple modificators are obviously standard.
It is so complicated to discuss standard modificators in general. Thus
we consider here only simple modificators.

Theorem 5. If R is locally super-universally continuous, then
every simple modificator is equivalent to one of

LS L
LSL<SLS <SL < Le§<g<0.

Proof. In general we have
amn (Lo S)I ~I(LoS)~ SL.
Because we have obviously
(LoS)I=LoSoI=Lo(SI)=(SI)-L,
and by (12), (6), (7), (14)
SL~ SI>(SI)eL=SIL~ SL
and furthermore by (6), (7), (16)
SL ~SI~IS>I(LoS)=1I(S-L)~ ISL.
Here we have
(18) ISL ~ SL.
Because we have by Lemma 3, (12), (16), (11)
SL>ISL ~ISI~IIS=IS ~SI~SL.
As we have by (7), (4), Lemma 3
LS>(LS)oL=L(SeL)y=L(L°S)=LLS=LS,
LS >So(LS) =(S°L)S =(L°S)S=LSS=LS,
LS> (LS)eS=LSS=LS,
we obtain
(19) L(LoS)~(L°8S)S~Lo(LS)~(LS)°L~S°(LS)~(LS)>S~LS.
As we have by (7), (4), Lemma 3
SL>Leo(SLY=>(L°S)L=(S°L)L=SLL=SL,
SL>(SL)eS=8S(Le8S)=S(8°L)=SSL=SL,
SL>So(SL)=SSL=SL,
we obtain
(20)  S(LeS)~(L°S)L~Lo°(SL)y~(SL)oL~S°(SL)~(SL)>S~SL.
Now we suppose that R is locally super-universally continuous.
Putting A=S, B=0 in Lemma 5, we obtain
SLS>LSSL=LSL,
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Thus we have by (7) and Lemma 3

LS L
LSL<LSLS<gr< LoS<g<0.

We need only to prove that for each one C of these modificators, each
one of LC, SC, IC, (L°S)C also is equivalent to one of them.
For C=LSL, we have obviously LLSL=LSL by (9). Putting
A=S, B=L in Lemma 5, we obtain by Lemma 3
LSL>S°(LSL)>=SLSL>LSSLL=LSL,
and hence SLSL~LSL. Putting A=I, B=L in Lemma 5, we obtain
by (18)
LSL>ILSL>LISLL=LISL~LSL,
and hence ILSL~LSL. As LSL is regular by Lemma 3, we also have
LSL>(LoS)LSL=LSLSL=L(SLSL)~LLSL=LSL
and hence (L°S)LSL~LSL.
For C=SLS, putting A=LS, B=0 in Lemma 5, we obtain by (7)
LSL>LSLS>LLSSL=LSL,
and hence LSLS~LSL. Putting A=IS, B=0 in Lemma 5, we obtain
by (18)
ISLS > LISSL=LISL~LSL.
On the other hand we have by (2), (12)
ISLS <I-(SLS)=SLSI~SLSL~LSL.
Thus we have ISLS~LSL. As we have by (2), (4)
LSLS =LSSLS =(L~8S)SLS <S°(LSLS)<LSLS,
we also obtain (L°S)SLS~LSL.
For C=SL, we see easily by (2), (4), (18)
LC~(LS)C~LSL, IC~SC~C.
For C=LS, we see easily by (2), (4)
SC ~(L°S)C~SLS, LC~C.
Putting A=1, B=0 in Lemma 5, we obtain by (18)
ILS>LISL ~ LSL.
On the other hand we have by (2), (12), (16)
ILS <(I-L)S=LIS~LSI~LSL.
Thus we obtain IC~LSL.
For C=LoS, we have obviously by (17), (19), (20), Lemma 6
LC~LS, SC~IC~SL, (L°S)C~SLS.
For C=L or S, we need not discuss, because it is trivial by (19), (20).
Theorem 6. If R is locally super-universally continuous and
complete, then every standard modificator is equivalent to one of

LS<SL<§<0.

Proof. Let [p,] (1€4) be a system of projectors such that AU [p:]
€4

=1 and [p,]R is super-universally continuous for all 1¢4. As L~O
in [p,JR, we have SL~S in [p,]R for every i1¢A. Thus we have
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LSL~LS in R. Therefore we conclude LSL~SLS~LS by Theorem 5.
If a,=SL-lim a,, then we can find ©¢8S by definition such that

v -»00

af=L-lima? for every 3¢&.

V>0

As L~O in [p,]R, we obtain hence
(Ip.d[plao)f=lim ([p,][pla,)*? for every 8¢S, icA, peR.

Thus, putting L={[p,]1[p]: 1€4, peR}, we have LeL and
af=lima?® for [eg, 8¢S,

Y >0

and hence a,=L°S-lim a, by definition. Thus we have SL>(L°S), and

Y >0
consequently SL~(L°S) by (2). Therefore we conclude by Theorem 5
that every simple modificator is equivalent to one of

LS <SL<§<0.

Now we can prove that every standard modificator is equivalent to one
of them. For this, we need only to show that for every pair C,, C, of
them, C,°C, is equivalent to one of them. First of all, we have L-S~SL,
as proved just above. By virtue of (19) and (20), we have obviously
Lo(LS)~(LS)o L~(LS)°8 ~So(LS)~LS,
Lo(SL)~(SL)o L~(SL)>S ~S°(SL)~SL.
We also have by (4), (2), Lemma 3
SL>(SL)°(SL)=S(L°(SL))=S((SL)> L)>=SSLL=SL,
LS >(LS)>(SL)=LSSL=LSL ~LS,
LS>(SL)(LS)=SLLS=SLS~LS,
LS>(LS)°(LS)=LSLS~LLS =LS,
and hence (SL)°(SL)~SL, (LS)°(SL)~(SL)o(LS)~(LS)~(LS)~LS.
Example 1. Let © be a totally additive set class on a space S;
m(E) (Ee©) a totally additive measure; and R, the totality of measur-
able functions on S. For ¢, YR, we define o=, if
mix: o(x)<Y(x), xcE}=0 for m(E)< + o,
that is, ¢(x)=Y¥(x) almost everywhere in E for m(E)< + oo. Then we
see easily that R, constitutes a locally super-universally continuous,
complete, semi-ordered linear space. Let R, be the set of all such
measurable functions ¢ on S that we can find a sequence of sets E,eS
with m(E,)<+c (v=1,2,.---) for which z€¢Z, for all v=1,2,.-.
implies ¢(x)=0. R, is obviously a semi-normal manifold of R, and we
see easily that R, is super-universally continuous and complete. We
denote by R an arbitrary semi-normal manifold of R,. R is obviously
locally super-universally continuous.
There are two well-known convergence concepts in R, that is, the
point convergence and the measure convergence. A sequence ¢,cR
(v=1,2,---) is said to be point convergent to ¢, if lim ¢,(x)=¢,(x)

almost everywhere in £ for m(£)< -+ o, A sequence ¢,¢R (v=1,2,
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-++) is said to be measure convergent to ¢, if

lim m{x: |, (2)—¢@o(x) |<e, xeE}=0 for ¢>0, m(E)< 4+ oo.

v >0
We can prove easily: the point convergence is equivalent to L-com-
vergence in R, O-convergence in R, and L-convergence in R; the
measure convergence 18 equivalent to LS-comvergence im R, S-con-
vergence in R, and LSL-convergence in R.

Example 2. Let M be the so-called M-space on the closed interval
[0, 1], that is, M consists of all bounded measurable functions on [0, 1]
and o=V is defined as ¢(x)="Y(x) almost everywhere in [0, 1] for the
Lebesgue measure. M is super-universally continuous. For each pair
of natural numbers p¢=<y, we denote by x..,., the characteristic function

of the closed interval [”T_l, %—J As the set of all pairs (g, v) is

countable, we can consider {y..,}. a sequence. Then we have obviously
}1:2 Yan(®)=1,  lim yc,.5(2€)=0

V>0

8
for every point « in [0, 1]. For a sub. operator 3, if {(%)} is con-

v

8
vergent, then lim x{, ,,(#)=0 except for x=lim <{j—> . Thus lim ¥4, ,,=0
v >0 Y >00

v >0

in M, because {y..,}, is bounded. Therefore we have
S-lim ¥,,,, = 0.
We have obviously for every point « in [0, 1]

lim ”X(/l,v)(w): + oo, 1_11_'1_1 XJX(,,,,,)(QU):O.
V>

v >0

8
For a sub. operator 3, if {(—'(i) } is convergent, then lim (vy(,,.,)}(x)=0
Y v vyo0

8
except for x=Ilim (-fi> , and hence

V>0 Y

L-lim (vxu,5)* = 0

but not O-convergent, because {(vy.,.,)?}., is not bounded in M. Thus
SL-li»rg Vi = 0,
but {vxe,y} %8 mot LS-convergent.

Let €, be the totality of sub. operators. We denote by R the set
of all mappings from &, into M. For each x¢R, denoting by x(3) the
image of 3¢S, by %, we define ax+ By for x, ycR as

(ax+By)(B)=ax(3)+ By(B) for all 8¢S,
and x>y as 2(8)=y(8) for all 3¢&,. Then we see easily that R is
universally continuous and loecally super-universally continuous, and for
a sequence {%,},~, we have limx,=0 in R if and only if lim,(3)=0
in M for all 5¢S, T o
We can find uniquely a sequence u,€R (v=1,2,--.) such that for
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every sub. operator ${y, t,--+} we have

(.3, ={twmly w.(3=0 for vrp, (p=1,2,-..).
As to this sequence {u,},-:, wWe see easily that LS-lim u,=0 but {u,},
18 not SL-convergent; LSL-lim yu,=0 but {vu,},~, ts not SLS-convergent.

v >0

We also can find uniquely a sequence »,éR (v=1,2,---) such that
{v.®)}L={xc.r}»  for all 8¢S,
As to this sequence {v,},, we have S-lim v,=0, SL-lim vv,=0 in R but

v -»00 v >0

{vv,},=1 98 not LS-convergent. We see easily furthermore that
SLS-lim (u,+v,) = 0,
¥ >0

but {u,4+v,},5: ts neither LS- mor SL-convergent.



