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1. Introduction. In this paper we generalize to the infinite case
our theorem that a finite semiring without zeroid is a ring 1. We
prove the natural extension that a compact semiring without zeroid
is a ring. As a by-product, we obtain a generalization for the com-
mutative case of Numakura’s theorem that a compact semigroup satis-
fying the cancellation law is a group [4 to a compact abelian semi-
group without zeroid is a group.

I. Kaplansky [2J has given structure theorems for compact rings.
He proved that a compact semi-simple ring is isomorphic and homeo-
morphic to a Cartesian direct sum of finite simple rings [_2. Hence,
this structure theorem remains true for a compact semi-simple semiring.

Only semirings with commutative addition and a zero, in the sense
of Vandiver and Weaver [5J, are considered. This paper has benefited
materially from discussion with H. Zassenhaus of the University of
Notre Dame.

2 Quotient spaces. Definition 1. A topological semiring is a
semiring S together with a Hausdorff topology on S under which the
semiring operations are continuous. Since the zeroid of a semiring
will play an important role in what follows, we repeat its definition.

Definition 2. The zeroid Z(S) of a semiring S is the set of
elements z of S for which the equation z+x=x is solvable in S.

In a previous paper [1 we defined two elements i, i of a semiring
S to be equivalent if the equation i,_+x=i.+x is solvable in S. These
equivalence classes i* represented by iS form a semiring S* with
cancellation law of addition, according to the laws i*+i*--(i+i.)*,
i*i*--(ii)*. S* is then a halfring 6. The zeroid consists of all
elements z of S for which z*--0, i.e. the zeroid of S is the inverse
image of the O-element of S* under the homeomorphism i-->i* of S
onto S*.

We introduce in S* the quotient topology, that is the largest
topology for S* such that the function i->i* is a continuous mapping
of S onto S*. We assume that S is a compact space. Then S* is
also compact space, for the function i--> i* is a continuous mapping
of S onto S*

LEMMA 1. The compact space S* is Hausdorff.
Proof. We recall the following theorems: Let X be a topological
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space, let be an upper semi-continuous decomposition of X whose
members are compact and let have the quotient topology. Then
is Hausdorff, provided X is Hausdorff 3.

A decomposition of a topological space X is upper semi-con-
tinuous if and only if the projection P of X onto is closed

We prove that the projection (quotient map) i->i* is closed, that
is the image of each closed set is closed. Let A be a closed subset of
S and A* its image. We show that A* is closed subset of S*. Since
S* is a quotient space of S this is equivalent to proving that the set

A of all elements y of S, such that y* A*, is a closed subset of S.
Since a compact subset of a Hausdorff space is Closed, it is sufficient

to prove that A is a compact subset of S. We recall that a topological
space X is compact if and only if each net in X has a subnet which
converges to some point of X 3. Hence, we wish to show that the

net {y] in A has a subnet which converges to some point of A. There
exist Xn, such that y,* x,*, that is y-z--x-Zn, X A and z S.
Since A is a closed subset of S, it is a compact subset of S. Hence,
the net {Xn} has a subnet {x} which converges to some point x of A.
Similarly the net [z] possesses a subnet [z} which converges to some
point z of S. Hence, there exists a convergent subnet {yan Of the net
{y} such that y-z--x-z, where lim x--x and lim z--z.
Because of the continuity of addition, lim yan-lim Zan--lim Xan-lim
y-Z--X-Z and yeA. This implies that A is a compact subset of the
Hausdorff space S and consequently a closed subset of S. The mapping
i->i* is upper semi-continuous.

Since i} is closed, S being a T-space, it follows that its image
[i*} is also closed in S* and the inverse image of {i*} is a closed
subset of S and therefore a compact subset of S. The members of
the decomposition of S are compact. Since S is Hausdorff, then also
S* is Hausdorff.

LEMMA 2. The compact halfring S* is a compact ring.

Proof. The additive semigroup of S* is a compact semigroup
satisfying the cancellation law and hence is group by Numakura’s
theorem 4J. S* is a compact ring.

LEMMA 3. If S is a compact semiring without zeroid then S
is a compact ring.

Proof. Lemma 2 states that S* is a ring. Hence, for any x eS,
x* +y*--O* is soluble in S* and (x-y)*-O*. Since the zeroid Z(S)--O,
this implies that x-y--O and S is a ring.

As an immediate consequence of Lemma 3, we have
THEOREM 1. A compact semimodule without zeroid is a module.
This theorem is a generalization for the commutative case of
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Numakura’s theorem [4, stated in the introduction.
If S is semi-simple, its semiradical is zero. In our previous paper

[1, we showed that the zeroid Z(S) is a two-sided ideal contained in
the semiradical. Hence Z(S)--0 and we have the Kaplansky result 2
for semirings.

THEOREM 2. A compact semi-simple semiring is isomorphic and
homeomorphic to a Cartesian direct sum of finite simple rings.
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