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134. Representation of Some Topological Algebras. III

By Shouro KASAHARA
Kobe University
(Comm. by K. KUNUGI, M.J.A., Dec. 12, 1959)

7. On the condition (ii). It is easy to see that a semi-simple
algebra satisfies the condition (*)* but not the condition (ii)” in general.
Let E be an algebra, and let we E; then we denote by (u), the right
ideal generated by u, that is, the set of all elements Au-ux, where 2
runs over the scalar field and «# over the whole E; we write (u), the
left ideal generated by w.

LEMMA 1. For a semi-simple algebra E, each one of the following
conditions is equivalent to the condition (ii):

(1) For any two mon-zero elements u,ve K, we have wE  Ev
=+{0}.

(2) For any two mon-zero elements u,veE, we have (w), ~(v),
=={0}.

Proof. It is clear that the condition (ii) implies (1) and (1) implies
(2). To prove the implication (2)— (ii), let us suppose that an algebra
E satisfies the condition (2) and not (ii). Then there exist two non-
zero elements u,veFE such that uxv=0 for every x¢FE. Since E is
semi-simple, we can find an element ac E with wa =0, and so by (2),
there exists a non-zero element w=aua+uab=pv+-cve(ua), ~ (v),, where
a, B are two numbers and b,ce E. Now, if w*=0, then for any number
A and any x¢ K, we have

AW+ 2w — 2w — 2w -+ 1w+ Jwrw + 2w + rwrw=0,
since wrw=(aua+uab)x(fv+cv)=0; it follows that w belongs to the
radical of E, and so w=0, which is a contradiction. Thus w?*=afuav
+auacv+ fuabv+uabcv==0. But this is absurd since uFEv={0}.

LEMMA 2. For an algebra E with a minimal left ideal L such
that L*=={0}, each one of the following conditions is equivalent to the
condition (ii):

(1) For any non-zero element uec K, we have wE L =-{0}.

(2) For any non-zero element we E, we have uL {0}

Proof. Since L?*=={0}, we can find an idempotent pe E such that
L=FEp. The implication (ii)— (1) is obvious, because uEpZuFE L.
If there exists a non-zero element uxcuFE - Ep, then we have uxr=ap
for some acFE, and hence 0=rap=uxpcul, proving the implication
(1) (2). Now suppose that the condition (2) is satisfied, and let u, v

1) Cf. S. Kasahara: Representation of some topological algebras. I, II, Proc.
Japan Acad., 34, 355-360 (1958); 35, 89-94 (1959).
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be two non-zero elements of E. Then since vEp=-{0}, we can find an
element be E such that vbp=-0. We shall now show that Ewvbp ={0}.
Suppose that Evbp={0}; then the set I of all elements xp specified by
the relation Exp={0} contains a non-zero element vbp, and as can easily
be seen, I is a left ideal contained in the minimal left ideal Ep. Hence
I=FEp. It follows that pel, and we have Ep={0}, which is absurd.
Thus Evbp=:{0}. Now since the left ideal Ewvbp is contained in the
minimal left ideal E'p, we have Evbp=FEp and so we have wEvbp=uED
%{0}, which implies #Ev=={0}. This completes the proof.

8. Continuity of the ring multiplication. LEMMA 1. Let E be
a topological algebra and peE be a mon-zero idempotent. Then the
topology of Ep (resp. pE) induced from K is the finest topology having
the property that the linear mapping ¢ of E into Ep (resp. pE),
defined by o(x)=xp (resp. ¢(x)=px), 18 continuous.

Proof. It will suffice to give a proof only to Ep. For any neigh-
bourhood U of 0 in E, we can find a neighbourhood V' of 0 in E such
that VpZU. Hence Vp=Z U, Ep. Conversely, if xpeV - Ep, then
xp=(xp)pe Vp, and so we have V _ Ep = Vp.

Let E and F be two vector spaces constituting a separated dual
gystem. We say that a topology on E is compatible with the duality
between F and F if, with the topology, E is a topological vector space
(not necessarily locally convex) and the dual of E is F.

THEOREM 9. Let E be a topological algebra satisfying the condi-
tion (ii), and let p, qe E be two non-zero idempotents of rank 1. Then:

(1) With the induced topology from E, the topological vector
spaces Ep (resp. pE) and Eq (resp. ¢E) are isomorphic.

(2) If the topology of Ep (resp. pE) induced from E is com-
patible with the duality between Ep and pE (resp. pE and Ep), then
the topology of Eq (resp. pE) induced from E is compatible with the
duality between Eq and qE (resp. ¢E and Ejg).

Proof. It will suffice to give a proof to Ep. By Lemma 4 of
section 4, we can take two elements a,beE such that p=aqb and
g=bpa. As was shown in the proof of Theorem 9, the mapping ¢
defined by ¢(xp)=2apagq is an (algebraic) isomorphism of E’p onto Ej,
and the mapping #q— 2gbp is nothing more than the inverse mapping
of ¢. But then the ring multiplication being separately continuous, ¢
is a homeomorphism.

Let us now turn to prove the assertion (2). Let &’ be an arbitrary
continuous linear form on Eq. Since the mapping ¢ defined above is
continuous, 2'o¢ is a continuous linear form on Ep. Therefore by the
assumption, the linear form x'c¢ is represented by an element pz of
pE. That is, for any xpe Ep, we have {(xp, x’opyp=pzxp. It follows
that, for any xgeFEjy,
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(xgq, @) p=<{2qbp, &'°¢)p=pzaqbp=2p
for some A. Hence we have qbpzrq=qbpzrqbpa=igbpa=2q, and so
gbpzag=<{xq, x'>q for any xzgecFEq. Thus the dual of Eq is identical with
qFE, and the proof of (2) is completed.

Let E be an algebra satisfying the condition (ii). We say that a
topology = compatible with the structure of vector space of E is
compatible with a non-zero idempotent of ramk 1 if there exists a
non-zero idempotent peE of rank 1 such that the topology r is com-
patible with the duality between Ep and pE.

Let X be a locally convex Hausdorff vector space, © a covering
of X consisting of bounded sets in X, and E a subalgebra of (X, X)
containing all continuous linear mappings of finite rank. Then it is
easy to see that the topology of uniform convergence on members of
S is compatible with a non-zero idempotent of rank 1.

Let X be a vector space. Two topologies r, and 7, compatible with
the structure of vector space of X, are said to have the same dual if
the dual of X by z, is identical with that by ..

LEMMA 2. Let E be an algebra satisfying the condition (ii), and
T the set of all topologies compatible with the structure of vector space
of E. Further let t,eT be compatible with a mon-zero idempotent of
rank 1. Then each topology v compatible with the structure of algebra
of E and satisfying the following condition is compatible with a non-
zero tdempotent of rank 1:

There are a finite number of topologies Ty, Tay s+, Tuity Toy Toy * *y
tha(=1)eZ such that c,,, is coarser than i for any i1=0,1,---,n and
that, for each ©=0,1,---,n+1,7, and i have the same dual.

Proof. Let pcE be a non-zero idempotent of rank 1. Suppose
that a topology ¢ is compatible with the structure of algebra of E and
satisfies the condition. Then since the ring multiplication in E is
separately continuous for the topology z, it is sufficient to show that
every linear form x’ on Ep continuous for the topology r can be rep-
resented by an element of pE. Now put {x,x>={xp, x>, then we
obtain a linear form x; on E continuous for the topology r. Hence by
the condition, %] is continuous for the topology z,.;, and so is for the
topology <,. Then again by the condition, x] is continuous for the
topology 7,, and so on. Thus we can conclude that %, is continuous for
the topology z,, and so is its restriction #' to Ep. This completes the
proof.

The following theorem is a simple generalization of a theorem due
to Rickart.?

THEOREM 11. Let E be an algebra satisfying the conditions (i)

2) C. E. Rickart: The uniqueness of norm problem in Banach algebras, Ann.
Math., 51, 615-628 (1950),
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and (ii). Then there exists at most one topology which makes E into
a metrizable complete topological algebra.

Proof. Let r, and 7, be two topologies which make E into a metri-
zable complete topological algebra. We show that the identity mapping
of K with 7, into E with 7, is closed, then in view of the closed graph
theorem, we have r,=7,. Let {x,} be a sequence in E which converges
to 0 for 7, and to a=0 for 7, and let p be a non-zero idempotent of
rank 1. By the condition (ii), we have axp -0 for some x¢cFE, and so
we can find further an element y¢E such that ip=pyaxp=0. On the
other hand, since the topologies considered are Hausdorff ones, there
exist two neighbourhoods U, U, of 0 in E for the topologies r, and z,
respectively such that ipe U, (¢=1,2) if and only if [21|<1. Now let
e>0 be arbitrary. We can find then two neighbourhoods V, and V, of
0 in E for the topologies 7, and 7, respectively such that pyV,axp S eU,
and pyV,xp & eU,. From the assumption on the sequence {x,} it follows
that a—x,€V, and x,¢V; for a sufficiently large positive integer n.
Therefore if we put py(a—=x,)xp=ap and pyx,xp=pFp, we have |a|=<e
and |B|=<e¢, and hence we can conclude |21|=2¢ since ip=pyarp=py
-(a—x,)xp+pyr,ep. We have thus reached a contradiction 1=0 or
pyaxp=0, which completes the proof.

COROLLARY. Let X be a locally convexr Hausdorff wvector space.
Then there exists at most one topology which makes L(X, X) into a
metrizable complete topological algebra.

THEOREM 12. Let E be a locally convex Hausdorff algebra satis-
Sying the condition (ii). Suppose that the ring multiplication s con-
tinuous and the topology of E is compatible with a mon-zero idempotent
of rank 1. Then there exists a normed vector space X such that E
is mapped, by a continuous isomorphism, onto a subalgebra of L,(X, X)»
containing all continuous linear mappings of finite rank. Con-
sequently, the topology of E can be defined by a family of morms.
If in addition the topological algebra E is complete, we can take a
Banach space as X.

Proof. Let U be a neighbourhood of 0 in E such that ipeU if
and only if [2]<1. We can find then, by the assumption, a neighbour-
hood V of 0 in K such that VVp<Z U. Now, for any pxepKE, there
exists a non-zero number A for which we have Apxe V and so ipxVp S U.
It follows therefore that | (Vp, px) | is bounded, that is to say, Vp is
bounded in Ep, and hence the vector space Ep with the topology in-
duced from E is normable. Let us denote by X the vector space with
the norm determined by the set Vp, and let N be a neighbourhood of

3) Ly(X, X) denotes -L(X, X) with the topology of uniform convergence on each
bounded set in X,
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0 in E such that NNCV. Then we have, for some number 1==0,
AVpE N and so we have AINVpT NNCV or ANSW(Vp, Vp). It
follows that the isomorphism #—>% of E into £,(X, X) defined by
u(xp)=wuxp is continuous. On the other hand, since the topology of E
is compatible with the idempotent p, the dual of X is pE, and hence

E= {#; ue '} contains all continuous linear mappings of finite rank. If
E is complete, then by Lemma 38 of section 4, Ep is also complete.
This completes the proof.

COROLLARY 1. Let E be a metrizable complete locally convex
algebra satisfying the condition (ii). Suppose that the topology of E
is compatible with a mnon-zero idempotent of rank 1. Then there
exists a Banach space X such that E is mapped, by a continuous
isomorphism, onto a subalgebra of L,(X, X) containing all continuous
linear mappings of finite rank.

COROLLARY 2. Let X be a locally convex Hausdorff vector space,
X' its dual, and E be a subalgebra of .L(X, X) containing all continuous
linear mappings of finite rank. If there exists a locally convex
Hoausdorff topology =, compatible with the structure of algebra of E
and also compatible with a non-zero idempotent of rank 1, for which
the ring multiplication in E is continuous, then the Mackey topology
(X, X') 18 normable.

In fact, let ®¥’ ®2 (xc¢X and x'¢X’) be a non-zero idempotent of
rank 1, then on the space Eox’' ®@z=u"® X the topology r is normable,
and so identical with the Mackey topology since r is compatible with
the non-zero idempotent of rank 1.

COROLLARY 3. Let X be a locally convex Hausdorff vector space.
Suppose that the topology of X is that of Mackey. Then metrizable
complete locally convex topology compatible with the structure of al-
gebra of L(X,X) and also compatible with a mon-zero idempotent
of rank 1 does mot exist except for a topology by a norm. That s,
iof the algebra L(X, X) is metrizable complete for a locally convex
topology © compatible with a mon-zero idempotent of rank 1, then X
and the topology t are mormable; more precisely, the topology = 1s
identical with the topology by the operator norm.

In fact, by Corollary 2, the space X is normable and complete, and
so the conclusion follows from Theorem 11.

COROLLARY 4. Let X be a locally convex Hausdorff vector space,
and E be a subalgebra of L(X,X) containing all continuous limear
mappings of finite rank. If there exists a locally convex Hausdorff
topology compatible with the structure of algebra of E for which the
ring multiplication is continuous and which induces into X a coarser
topology than the original one of X, then X is mormable,
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The following corollary is a generalization of a well-known result.*

COROLLARY 5. Let X be a locally convex Hausdorff vector space,
and S a covering of X comsisting of bounded sets in X. Further let
E be a topological subalgebra of Lg(X, X) containing all continuous
linear mappings of finite rank. If, for a locally convex Hausdorff
topology = coarser than ane of the topologies compatible with the duality
between E and its dual E’, the ring multiplication in E is continuous,
then the topology = is normable. If in addition the topology r s coarser
than the topology of uniform convergence on members of S, then the
space X is also mormable.

Proof. As pointed out before, the topology of uniform convergence
on members of & is compatible with a non-zero idempotent of rank 1,
and hence by Lemma 2, the topology = is also compatible with a non-
zero idempotent of rank 1. Therefore by Corollary 2 above, the
Mackey topology (X, X’) can be given by a norm, and so by this
topology we can define a norm topology on E, which is finer than the
topology of uniform convergence on members of © and coarser than
the topology z. On the other hand, by the assumption, there exists
a topology z, finer than r and compatible with the duality between FE
and E’. Consequently the norm topology is also compatible with the
duality between E and E’, and so the topology ¢ is identical with the
norm topology.

In view of Corollary 2 of Lemma 4 of section 4 and Lemma 2 of
section 6, we see that a simple algebra E containing a non-zero idem-
potent of rank 1 is isomorphic with the algebra of all continuous linear
operators of finite rank on a locally convex Hausdorff vector space.
Therefore a simple algebra containing a non-zero idempotent of rank 1
and an identity element is of finite dimension.

On the other hand, we have the following

COROLLARY 6. Let E be a locally convex Hausdorff topological
simple algebra. If the rimg multiplication tn E 1s continuous and
the topology of E is compatible with a mon-zero idempotent of rank
1, them E 1is mapped by a continuous isomorphism into the algebra
consisting of all completely continuous limear operators on a normed
space.

4) See for example S. Kasahara: Quelques conditions pour la normabilité d’un
espace localement convexe, Proc. Japan Acad., 32, 574-578 (1956).



