No. 10] 575

131. On Some Properties of Intermediate Logics

By Toshio UMEZAWA

Mathematical Institute, Nagoya University, Nagoya, Japan (Comm. by Z. Suetuna, M.J.A., Dec. 12, 1959)

- In [1] I investigated inclusion and non-inclusion between certain intermediate predicate logics. The purpose of this note is to prove some properties of intermediate logics. We use in this note the same notations as in [1] without definitions.
- 1. Interpretation of classical logic. THEOREM 1. LK° and LMK° are minimal in the set of all predicate logics which have the properties (I) and (II) respectively.
- (I) For any K-provable sequent $\Gamma \rightarrow E$, the sequent $77\Gamma \rightarrow 77E$ is provable.
- (II) For any K-provable sequent $\Gamma \rightarrow \Delta$, the sequent $77\Gamma \rightarrow 77\Delta$ is provable.

For (II) we use Gentzen's LK as a deductive system of K-provable $\Gamma \to \Delta$. Only $\to 7$ and $\to V$ are the rules of inference which use MK° in a proof of LMK° . We prove (II) only for $\to V$. From $77\Gamma \to 77\Delta$, 77A(a) we obtain 7A(a), $77\Gamma \to 77\Delta$ and hence $AX \to A(x)$, $AX \to A(x)$ is provable. Hence, by applying a cut with this sequent and $AX \to A(x)$ as the upper sequents of the cut, we obtain $AX \to A(x)$, $AX \to A(x)$.

Secondly, let us assume that LZ and LY have the properties (I) and (II) respectively. Since $\rightarrow Vx(A(x) \lor \nearrow A(x))$ is K-provable, $\rightarrow \nearrow \nearrow Vx(A(x))$ $\lor \nearrow A(x))$ is Z-provable and hence $LZ \supseteq LK^{\circ}$. In the same way we see that $\rightarrow \nearrow \nearrow VxA(x)$, $\nearrow \nearrow Zx \nearrow A(x)$ is Y-provable and hence $LY \supseteq LMK^{\circ}$ since $\rightarrow VxA(x)$, $Zx \nearrow A(x)$ is X-provable.

2. Decomposition of sequent scheme. We mean by $A \leftrightarrow B$ that both $A \rightarrow B$ and $B \rightarrow A$. In LJ' the following equivalences are provable.

- i) $7(A \lor B) \leftrightarrow 7A \land 7B$, $7(A \supset B) \leftrightarrow 77A \land 7B$, $7(A \land B) \leftrightarrow A \supset 7B$, $777A \leftrightarrow 7A$, $A \supset (B \supset C) \leftrightarrow (A \land B) \supset C$, $(A \lor B) \supset C \leftrightarrow (A \supset C) \land (B \supset C)$, $A \supset (B \land C) \leftrightarrow (A \supset B) \land (A \supset C)$.
- ii) $7VxA(x) \leftrightarrow VxA(x) \supset 7\mathcal{Z}xA(x)$, $7\mathcal{Z}xA(x) \leftrightarrow Vx7A(x)$, $A \land VxB(x) \leftrightarrow Vx(A \land B(x))$, $A \land \mathcal{Z}xB(x) \leftrightarrow \mathcal{Z}x(A \land B(x))$, $A \lor \mathcal{Z}xB(x) \leftrightarrow \mathcal{Z}x(A \lor B(x))$, $A \supset VxB(x) \leftrightarrow Vx(A \supset B(x))$, $\mathcal{Z}xA(x) \supset \mathcal{Z}xA(x) \supset \mathcal{Z}xA(x) \supset \mathcal{Z}xA(x) \leftrightarrow \mathcal{Z}xA(x) \lor \mathcal{Z}xA(x) \leftrightarrow \mathcal{Z}xA(x) \lor \mathcal{Z}xA($
- iii) $A \wedge B$, $\Gamma \rightarrow \Delta$ is equivalent to A, B, $\Gamma \rightarrow \Delta$. $A \vee B$, $\Gamma \rightarrow \Delta$ is equivalent to A, $\Gamma \rightarrow \Delta$ and B, $\Gamma \rightarrow \Delta$. $\Gamma \rightarrow \Delta$, $A \wedge B$ is equivalent to $\Gamma \rightarrow \Delta$, A and $\Gamma \rightarrow \Delta$, B. $\Gamma \rightarrow \Delta$, $A \vee B$ is equivalent to $\Gamma \rightarrow \Delta$, A, B.

We say that a sequent scheme Y is decomposed in LX into a finite number of sequent schemes Z_1, \dots, Z_n , if and only if for any i $(1 \le i \le n)$ Z_i is (X, Y)-provable and Y is (X, Z_1, \dots, Z_n) -provable.

THEOREM 2. Any sequent scheme can be decomposed in LJ' into a finite number of sequent schemes, in which \land and \lor do not occur as outermost logical symbols of sequent formulas and \urcorner occurs only as an innermost logical symbol.

The following equivalences are provable respectively;

- iv) in LM $A \supset 7B \leftrightarrow 7A \lor 7B$, $7A \supset B \leftrightarrow 77A \lor B$, $A \supset (B \lor 7C) \leftrightarrow (A \supset B) \lor 7C$, $(7A \land B) \supset C \leftrightarrow 77A \lor (B \supset C)$;
- v) in LP_2 $(A \land B) \supset C \leftrightarrow (A \supset C) \lor (B \supset C)$, $A \supset (B \lor C) \leftrightarrow (A \supset B) \lor (A \supset C)$,

$$A \vee B \leftrightarrow ((A \supset B) \supset B) \vee ((B \supset A) \supset A);$$

- vi) in LEK° $\forall x A(x) \leftrightarrow \exists x \forall A(x)$;
- vii) in LD $\forall x A(x) \lor B \leftrightarrow \forall x (A(x) \lor B);$
- viii) in LF $VxA(x) \supset B \leftrightarrow \mathcal{Z}x(A(x) \supset B)$;
- ix) in LG $B \supset \mathcal{I}xA(x) \leftrightarrow \mathcal{I}x(B \supset A(x))$.

These logics are subsystems of LFG.

THEOREM 3. Any sequent scheme can be decomposed in LFG into a finite number of sequent schemes in which the antecedent is empty and the succedent consists of only one formula of Skolem normal form in which the logical symbol \vee does not occur.

PROOF. By virtue of the above equivalences, any sequent scheme can be decomposed into a finite number of sequent schemes of form $F \rightarrow E$ where the logical symbol \vee occurs neither in F nor in E. Then the sequent schemes obtained by this decomposition can be transformed, using the equivalence of $F \rightarrow E$ to $\rightarrow F \supset E$, to the form $\rightarrow S$ where S is a formula in which \vee does not occur. In terms of ii) and vi)-ix) S can be transformed to the prenex form S'. Since $\rightarrow A(a)$ is equivalent to $\rightarrow VxA(x)$ where a does not occur in A(x), we assume that no free individual variable occurs in S'.

Let S' be the form $\exists x_1 \cdots \exists x_n VyG(x_1, \cdots, x_n, y), n \geq 0$, where $G(x_1, \cdots, x_n, y)$ is a prenex form containing only the distinct free individual variables x_1, \cdots, x_n, y . Then we replace S' by $\exists x_1 \cdots \exists x_n \ \exists y Vz((G(x_1, \cdots, x_n, y)) \supset H(x_1, \cdots, x_n, y))$, which is denoted by S'', where H is a predicate variable with exactly n+1 argument-places which does not occur in G. Then $\to S'$ is equivalent to $\to S''$ in LFG. Next we transform S'' to the prenex form and repeat this procedure. Then we obtain the Skolem normal form of S. Hence the theorem has been proved.

References

- [1] T. Umezawa: On logics intermediate between intuitionistic and classical predicate logic, J. Symbolic Logic, 24 (1959) (to appear).
- [2] G. Gentzen: Untersuchungen über das logische Schliessen, Math. Zeitschr., 39, 176-210; 405-431 (1934-1935).