8. On Transformation of Manifolds

By Joseph Weier
(Comm. by K. Kunugi, m.J.A., Jan. 12, 1960)

Let $m>n>r \geq 1$ be integers, suppose M is an m-dimensional and N an n-dimensional oriented closed polyhedral manifold, let S be the simplicial image of an oriented r-sphere situated in N, and $f: M \rightarrow N$ a continuous mapping. Then one may suppose that $f^{-1}(S)$ is a finite polyhedron R in M satisfying

$$
\operatorname{dim} R=m-n+r
$$

Let A_{1}, A_{2}, \cdots be the ($m-n+r$)-simplexes of a simplicial decomposition of R, moreover A one of the A_{i}, and A^{*} an orientation of A. The simplexes used here are open and rectilinear. If a is a point in A, one can suppose S is smooth in a neighborhood of the point $b=f(\alpha)$. Let B be an r-simplex with $b \in B \subset S$. Define C to be an $(n-r)$-simplex in M perpendicular to A, and D an $(n-r)$-simplex in N perpendicular with respect to B such that $A \cap C=a, B \cap D=b, R \cap \bar{C}=a$, and $S \cap \bar{D}=b$. For every point $p \in \partial C$, let $\varphi(p)$ denote the vertical projection of $f(p)$ on D parallel to B. Then $\varphi(\partial C) \subset D-b$. For $p \in \partial C$, let $\varphi^{\prime}(p)$ be the vertical projection of $\varphi(p)$ on ∂D out of b. By C^{*} we denote an orientation of C such that $\left(A^{*}, C^{*}\right)$ gives the positive orientation of M, by B^{*} the orientation of B induced by S, and by D^{*} an orientation of D such that $\left(B^{*}, D^{*}\right)$ furnishes the positive orientation of N. Let $\beta\left(A^{*}\right)$ be the Brouwer degree of the map $\varphi^{\prime}: \partial B^{*} \rightarrow \partial D^{*}$.

Let a_{k} be an orientation of A_{k} and β_{k} the number $\beta\left(a_{k}\right)$. Then $\sum \beta_{k} a_{k}$ represents a finite $(m-r+r)$-cycle that we will denote by $\sigma_{f}(S)$ as well. If the continuous r-sphere S^{\prime} is homotopic to S within N, then

$$
\sigma_{f}(S) \sim \sigma_{f}\left(S^{\prime}\right)
$$

Let $\pi_{r}(N)$ be the r-dimensional Hurewicz group of N. Define h to be the homotopy class of S, and $\zeta(h)$ to be the homology class of $\sigma_{f}(S)$. Then the mapping $\zeta: \pi_{r}(N) \rightarrow H_{m-n+r}(M)$, where $H_{i}(M)$ means the i dimensional integral Betti group of M, is a homomorphism. Of course, the latter is related to known inverse homomorphisms. But for the following it is important to have an exact geometric realization of these homomorphisms; a problem to which already Whitney [4] has hinted.

Now suppose $r=2 n-m-1 \geq 2$, and let $\pi_{r}^{\zeta}(N)$ be the kernel of the homomorphism ζ, moreover h_{r}^{ζ} an element of $\pi_{r}^{\zeta}(N)$, and Q an oriented continuous sphere of h_{r}^{ζ}. One may suppose $f^{-1}(Q)$ is an $(m-n+r)$ polyhedron in M. Denote the cycle $\sigma_{f}(Q)$ by z as well. Evidently,
$\operatorname{dim} z=n-1 . \quad$ By $\zeta \pi_{r}^{\xi}(N)=0$,

$$
z \sim 0
$$

Define two n-chains y and Y^{\prime} of M to belong to the same equivalence class with respect to z if

$$
\partial y=\partial y^{\prime}=z \quad \text { and } \quad y^{\prime}-y \sim 0 .
$$

Let $Y_{i}(z), i=1,2, \cdots$, be the equivalence classes thus obtained, and suppose y_{i} is a chain of $Y_{i}(z)$. Then, for all pairs (i, j),

$$
y_{i}-y_{j}
$$

is an n-cycle $y_{i j}$ in M with integral coefficients. Denote the degree of the mapping $f: y_{i j} \rightarrow N$ by $\beta_{i j}(z)$. Then the system of the numbers (1)

$$
\beta_{i j}(z), \quad i=1,2, \cdots, \quad j=1,2, \cdots,
$$

is uniquely determined in the following sense:
If one represents h_{r}^{ζ}, instead of by Q, by another sphere, if z^{\prime} denotes the cycle corresponding to z, and if

$$
\beta_{i j}^{\prime}\left(z^{\prime}\right), \quad i=1,2, \cdots, \quad j=1,2, \cdots,
$$

are the numbers that correspond to the $\beta_{i j}(z)$, then one can assign a pair $\varphi(i, j)$ to every (i, j) satisfying $\beta_{i j}(z) \neq 0$ in such a way that, firstly,

$$
\beta_{i j}(z)=\beta_{\varphi(i, j)}^{\prime}\left(z^{\prime}\right)
$$

and that, secondly, the following holds: corresponding to each (k, l) with $\beta_{k l}^{\prime}\left(z^{\prime}\right) \neq 0$ there exists just one (i, j) with $\varphi(i, j)=(k, l)$.

Thus, while in the classical case each transformation of an oriented closed manifold in a second one of the same dimension possesses only one degree, the pairs (m, n) with

$$
m \leq 2 n-3
$$

furnish the system (1) that in general consists of an infinite number of degrees. By the way, $n \geq 3$ since we had supposed above that $m>n$. Apart from permutations and zeros, the system (1) is invariant under deformation of f.

Besides the pairs (m, n) with $n<m \leq 2 n-3$ above discussed, we will regard still another series of pairs: the positive integers m, n satisfying

$$
2 n \leq m \leq 3 n-2
$$

Let the meaning of M, N, and $f: M \rightarrow B$ be the same as before. Let r be the number $r=3 n-m-1$. Suppose the cycle z and the equivalence classes y_{1}, y_{2}, \cdots to be defined as before. Evidently,

$$
\operatorname{dim} z=2 n-1 \quad \text { and } \quad \operatorname{dim} y_{i}=2 n .
$$

In every neighborhood of f, there exists a map f^{\prime} homotopic to f such that the set consisting of all points $p \in M$ with $f(p)=f^{\prime}(p)$ is a finite ($m-n$)-polyhedron W. Now let w_{k} be the oriented $(m-n)$-simplexes of a simplicial decomposition of W, and define γ_{k} to the degree of w_{k} with respect to $\left(f, f^{\prime}\right)$. Then $\sum \gamma_{k} w_{k}$ is an $(m-n)$-cycle, w, with integral coefficients. For all (i, j), let $x_{i j}$ be the intersection cycle of $y_{i j}$
and w. Then $\operatorname{dim} x_{i j}=\operatorname{dim} y_{i j}+\operatorname{dim} w-\operatorname{dim} M=n$.
Let $\gamma_{i j}(z)$ be the degree of the mapping $f: x_{i j} \rightarrow N$. Then the system of the numbers
(2) $\quad \gamma_{i j}(z), \quad i=1,2, \cdots, \quad j=1,2, \cdots$,
is, apart from permutations and zeros, uniquely determined by the homotopy classes of Q and f.

We will conclude by recalling three recent papers [1-3] on the degree. In addition, we should remark that each of the degrees $\beta_{i j}$ and $\gamma_{i j}$ is decomposable in Nielsen components $\beta_{i j k}$ and $\gamma_{i j k}$ with

$$
\sum_{k} \beta_{i j k}=\beta_{i j} \quad \text { and } \quad \sum_{k} \gamma_{i j k}=\gamma_{i j}
$$

that, on their part, are invariant under homotopies. The de Rham isomorphism theorem furnishes integral expressions for the $\beta_{i j}$ and $\gamma_{i j}$.

References

[1] Eilenberg, S., and Steenrod, N.,: Foundations of algebraic topology, Princeton Math., ser. 15, 298-322 (1952).
[2] Fuller, F. B.,: A relation between degree and linking numbers, Princeton Math., ser. 12, 258-262 (1956).
[3] Rothe, E.,: Ueber den Abbildungsgrad bei Abbildungen von Kugeln des Hilbertraumes, Zur Theorie der topologischen Ordnung und der Vektorfelder in Banachschen Räumen, Compositio Math., 5, 166-176, 177-197 (1938).
[4] Whitney, H.,: Geometric methods in cohomology theory, Proc. Nat. Acad. Sci. U. S. A., 33, 7-9 (1947).

