8. On Transformation of Manifolds

By Joseph WEIER

(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1960)

Let $m > n > r \ge 1$ be integers, suppose M is an m-dimensional and N an n-dimensional oriented closed polyhedral manifold, let S be the simplicial image of an oriented r-sphere situated in N, and $f: M \to N$ a continuous mapping. Then one may suppose that $f^{-1}(S)$ is a finite polyhedron R in M satisfying

$$\dim R = m - n + r.$$

Let A_1, A_2, \cdots be the (m-n+r)-simplexes of a simplicial decomposition of R, moreover A one of the A_i , and A^* an orientation of A. The simplexes used here are open and rectilinear. If a is a point in A, one can suppose S is smooth in a neighborhood of the point b=f(a). Let B be an r-simplex with $b \in B \subset S$. Define C to be an (n-r)-simplex in M perpendicular to A, and D an (n-r)-simplex in N perpendicular with respect to B such that $A \cap C = a$, $B \cap D = b$, $R \cap \overline{C} = a$, and $S \cap \overline{D} = b$. For every point $p \in \partial C$, let $\varphi(p)$ denote the vertical projection of f(p)on D parallel to B. Then $\varphi(\partial C) \subset D - b$. For $p \in \partial C$, let $\varphi'(p)$ be the vertical projection of $\varphi(p)$ on ∂D out of b. By C^* we denote an orientation of C such that (A^*, C^*) gives the positive orientation of M, by B^* the orientation of B induced by S, and by D^* an orientation of Dsuch that (B^*, D^*) furnishes the positive orientation of N. Let $\beta(A^*)$ be the Brouwer degree of the map $\varphi': \partial B^* \to \partial D^*$.

Let a_k be an orientation of A_k and β_k the number $\beta(a_k)$. Then $\sum \beta_k a_k$ represents a finite (m-r+r)-cycle that we will denote by $\sigma_f(S)$ as well. If the continuous *r*-sphere S' is homotopic to S within N, then

$$\sigma_f(S) \sim \sigma_f(S').$$

Let $\pi_r(N)$ be the *r*-dimensional Hurewicz group of *N*. Define *h* to be the homotopy class of *S*, and $\zeta(h)$ to be the homology class of $\sigma_f(S)$. Then the mapping $\zeta:\pi_r(N) \to H_{m-n+r}(M)$, where $H_i(M)$ means the *i*dimensional integral Betti group of *M*, is a homomorphism. Of course, the latter is related to known inverse homomorphisms. But for the following it is important to have an exact geometric realization of these homomorphisms; a problem to which already Whitney [4] has hinted.

Now suppose $r=2n-m-1\geq 2$, and let $\pi_r^{\varsigma}(N)$ be the kernel of the homomorphism ζ , moreover h_r^{ς} an element of $\pi_r^{\varsigma}(N)$, and Q an oriented continuous sphere of h_r^{ς} . One may suppose $f^{-1}(Q)$ is an (m-n+r)-polyhedron in M. Denote the cycle $\sigma_r(Q)$ by z as well. Evidently,

dim z=n-1. By $\zeta \pi_r^{\zeta}(N)=0$,

$$z \sim 0.$$

Define two *n*-chains y and Y' of M to belong to the same equivalence class with respect to z if

$$\partial y = \partial y' = z \quad ext{and} \quad y' - y \sim 0.$$

Let $Y_i(z)$, $i=1, 2, \cdots$, be the equivalence classes thus obtained, and suppose y_i is a chain of $Y_i(z)$. Then, for all pairs (i, j),

$$y_i - y_j$$

is an *n*-cycle y_{ij} in M with integral coefficients. Denote the degree of the mapping $f: y_{ij} \to N$ by $\beta_{ij}(z)$. Then the system of the numbers (1) $\beta_{ij}(z), \quad i=1, 2, \cdots, \quad j=1, 2, \cdots,$

is uniquely determined in the following sense:

If one represents h_r^{ϵ} , instead of by Q, by another sphere, if z' denotes the cycle corresponding to z, and if

$$\beta_{ij}'(z'), \quad i = 1, 2, \cdots, \quad j = 1, 2, \cdots,$$

are the numbers that correspond to the $\beta_{ij}(z)$, then one can assign a pair $\varphi(i, j)$ to every (i, j) satisfying $\beta_{ij}(z) \neq 0$ in such a way that, firstly,

$$\beta_{ij}(z) = \beta'_{\varphi(i,j)}(z')$$

and that, secondly, the following holds: corresponding to each (k, l) with $\beta'_{kl}(z') \neq 0$ there exists just one (i, j) with $\varphi(i, j) = (k, l)$.

Thus, while in the classical case each transformation of an oriented closed manifold in a second one of the same dimension possesses only one degree, the pairs (m, n) with

$$m \leq 2n-3$$

furnish the system (1) that in general consists of an infinite number of degrees. By the way, $n \ge 3$ since we had supposed above that m > n. Apart from permutations and zeros, the system (1) is invariant under deformation of f.

Besides the pairs (m, n) with $n < m \le 2n-3$ above discussed, we will regard still another series of pairs: the positive integers m, n satisfying

$2n \le m \le 3n-2$.

Let the meaning of M, N, and $f: M \to B$ be the same as before. Let r be the number r=3n-m-1. Suppose the cycle z and the equivalence classes y_1, y_2, \cdots to be defined as before. Evidently,

dim z=2n-1 and dim $y_i=2n$.

In every neighborhood of f, there exists a map f' homotopic to f such that the set consisting of all points $p \in M$ with f(p) = f'(p) is a finite (m-n)-polyhedron W. Now let w_k be the oriented (m-n)-simplexes of a simplicial decomposition of W, and define γ_k to the degree of w_k with respect to (f, f'). Then $\sum \gamma_k w_k$ is an (m-n)-cycle, w, with integral coefficients. For all (i, j), let x_{ij} be the intersection cycle of y_{ij}

No. 1]

and w. Then dim $x_{ij} = \dim y_{ij} + \dim w - \dim M = n$.

Let $\gamma_{ij}(z)$ be the degree of the mapping $f: x_{ij} \rightarrow N$. Then the system of the numbers

(2) $\gamma_{ij}(z)$, $i=1, 2, \dots, j=1, 2, \dots$, is, apart from permutations and zeros, uniquely determined by the homotopy classes of Q and f.

We will conclude by recalling three recent papers [1-3] on the degree. In addition, we should remark that each of the degrees β_{ij} and γ_{ij} is decomposable in Nielsen components β_{ijk} and γ_{ijk} with

 $\sum_{k} \beta_{ijk} = \beta_{ij}$ and $\sum_{k} \gamma_{ijk} = \gamma_{ij}$

that, on their part, are invariant under homotopies. The de Rham isomorphism theorem furnishes integral expressions for the β_{ij} and γ_{ij} .

References

- Eilenberg, S., and Steenrod, N.,: Foundations of algebraic topology, Princeton Math., ser. 15, 298-322 (1952).
- [2] Fuller, F. B.,: A relation between degree and linking numbers, Princeton Math., ser. 12, 258-262 (1956).
- [3] Rothe, E.,: Ueber den Abbildungsgrad bei Abbildungen von Kugeln des Hilbertraumes, Zur Theorie der topologischen Ordnung und der Vektorfelder in Banachschen Räumen, Compositio Math., 5, 166–176, 177–197 (1938).
- [4] Whitney, H.,: Geometric methods in cohomology theory, Proc. Nat. Acad. Sci. U. S. A., 33, 7-9 (1947).