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1. Introduction. In this note we shall report promptly some
results about (R)-semigroups and g-semigroups without proof. The
propositions will be precisely discussed in another papers [3, 4.

A finite semigroup S is said to have (R)-property if S of order n
contains no proper subsemigroup of order greater than n/2. We mean
by a decomposition of S a classification of the elements into some classes
due to a congruence relation. A decomposition is called homogeneous
if each class is composed of equal number of elements. If every de-
composition of a finite semigroup S is homogeneous, we say S has
property, or S is called a $9-semigroup.

According to Rees [1, if a finite semigroup S is simple, it is
represented as a regular matrix semigroup with a ground group G and
with a defining matrix P-(p) of type (1, m), namely

either S--{(x; i ) xG, i=l,. ., m; j--l,..., l}
or S={(x; i j)]xeG, i=1,..., m; j-l,...,/}{0}

in which 0 is the two-sided zero of S. The multiplication is defined as

i 3")(y; s t)-- (xp,y; i t) if p0(x;
0 if p--0 and hence S has 0.

Let M--{1,...,m}, L={1,...,1}. M and L are regarded as a right-
singular semigroup and a left-singular semigroup respectively. For the
sake of convenience, the notations

Simp. (G; P) and Simp. (G, 0; P)
denote simple semigroups S with a ground group G and with a defining
matrix P. The former is one without zero, whence p 0 for all i,
but the latter denotes one with zero 0, so that if p. 0 for all i and 3",
S contains no zero-divisor.

2. (R)-semigroups. The following (R)-property is stronger than
(R)-property, i.e. (R)-property implies (R)-property.

A finite semigroup S is said to have (R)-property if the order of
any subsemigroup is a divisor of the order of S.

Let e be a unit of a finite group G.

Lemma 2.1. Smp. (G; (:)) is an (R)-semigroup.

Lemma 2.1’. Simp. (G; (e e)) is an -semigroup.
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Lemma 2.3. Let S-Simp. (G, 0; (Pji) i-l,..., m; j-l,..., l) of
order 2. S has no (R)-property.

Lemma 2.4. A finite non-simple semigroup has no (R)-property.
Lemma 2.5. Let S-Simp.(G; (pji) i--1,...,m; j--l,...,1). If S

is an (R)-semigroup, then 12 and m2.
Theorem 2.1. A finite semigroup S is an (R)-semigroup of order

:2 if and only if S is one of the following cases:
1 ) a semilattice of order 2,
2 a z-semigroup of order 2,

(3) a finite group of order _2,

5 Simp. (6; (e e)),

where e is a unit of G, O@aeG, and the order of G is 1.
Corollary 2.1. A semigroup which contains no proper subsemi-

group is either a semigroup of order at most 2 or a cyclic group of
prime order 3.

3. -semigroups. It goes without sa.ying that any semigroup
of order 2 and any indecomposable semigroup are -semigroups.

Lemma 3.1. A @-semigroup is simple and so completely simple.
Lemma 3.2. If a @-semigroup S has zero O, then S is an inde-

composable semigroup [2].
Corollary 3.1. If a @-semigroup S has a non-trivial decomposi-

tion, then S is a simple semigroup without zero.
Lemma 3.3. Let S:Simp.(G; (p) i-l,...,m; j-l,...,/). If S

is a @-semigroup, then m2 and 12. Therefore S is a simple

semigroup whose defining matrix is (e)e or (e e)or (: :) aO.
0n the other hand we can prove

are all @-semigroups.
Thus we have
Theorem 3.1. A finite semigroup of order 2 is a @-semigroup

if and only if it is one of the following seven cases:
1 a semilattice of order 2,
2 ) a z-semigroup of order 2,

(3) an indecomposable finite semigroup of order 1,
(4) a finite group of order 2,
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6 Simp. (G; (e e)),

where G is a finite group of order 1, e is a unit, and a==O.
4. Remark. As consequence of 2, we see that (R)-property

implies (R)-property, that is, (R)-property and (R)-property are equivalent.
Also, from the result of 3, it follows that (R)-property implies ,9-
property; and moreover (C)-property implies (R)-property under the as-
sumption that S is not an indecomposable semigroup.
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