17. Note on Finite Semigroups which Satisfy Certain Group-like Condition

By Takayuki TAMURA

Mathematical Institute of Tokushima University (Comm. by K. SHODA, M.J.A., Feb. 12, 1960)

§1. Introduction. In this note we shall report promptly some results about \mathfrak{S} -semigroups and \mathfrak{F} -semigroups without proof. The propositions will be precisely discussed in another papers [3, 4].

A finite semigroup S is said to have \mathfrak{S} -property if S of order n contains no proper subsemigroup of order greater than n/2. We mean by a decomposition of S a classification of the elements into some classes due to a congruence relation. A decomposition is called homogeneous if each class is composed of equal number of elements. If every decomposition of a finite semigroup S is homogeneous, we say S has \mathfrak{H} -property, or S is called a \mathfrak{H} -semigroup.

According to Rees [1], if a finite semigroup S is simple, it is represented as a regular matrix semigroup with a ground group G and with a defining matrix $P=(p_{ji})$ of type (l, m), namely

either $S = \{(x; i \ j) \mid x \in G, i = 1, \dots, m; j = 1, \dots, l\}$ or $S = \{(x; i \ j) \mid x \in G, i = 1, \dots, m; j = 1, \dots, l\} \cup \{0\}$

in which 0 is the two-sided zero of S. The multiplication is defined as

$$(x; i \ j)(y; s \ t) = \begin{cases} (xp_{js}y; \ i \ t) & \text{if } p_{js} \neq 0 \\ 0 & \text{if } p_{is} = 0 \text{ and hence } S \text{ has } 0. \end{cases}$$

Let $M = \{1, \dots, m\}$, $L = \{1, \dots, l\}$. M and L are regarded as a rightsingular semigroup and a left-singular semigroup respectively. For the sake of convenience, the notations

Simp. (G; P) and Simp. (G, 0; P)

denote simple semigroups S with a ground group G and with a defining matrix P. The former is one without zero, whence $p_{ji} \neq 0$ for all i, j, but the latter denotes one with zero 0, so that if $p_{ji} \neq 0$ for all i and j, S contains no zero-divisor.

§2. S-semigroups. The following \mathbb{S}_1 -property is stronger than S-property, i.e. \mathbb{S}_1 -property implies S-property.

A finite semigroup S is said to have \mathfrak{S}_i -property if the order of any subsemigroup is a divisor of the order of S.

Let e be a unit of a finite group G.

Lemma 2.1. Simp. $\left(G; \begin{pmatrix} e \\ e \end{pmatrix}\right)$ is an \mathfrak{S}_1 -semigroup. Lemma 2.1'. Simp. $(G; (e \ e))$ is an \mathfrak{S}_1 -semigroup. No. 2] Note on Finite Semigroups which Satisfy Certain Group-like Condition

Lemma 2.2. Let $0 \neq a \in G$. Simp. $\left(G; \begin{pmatrix} e & e \\ e & a \end{pmatrix}\right)$ is an \mathfrak{S}_1 -semigroup. Lemma 2.3. Let $S = \text{Simp.}(G, 0; (p_{ji}) \ i = 1, \dots, m; \ j = 1, \dots, l)$ of order >2. S has no \mathfrak{S} -property.

Lemma 2.4. A finite non-simple semigroup has no \mathfrak{S} -property. Lemma 2.5. Let S=Simp. $(G; (p_{ji}) \ i=1, \cdots, m; \ j=1, \cdots, l)$. If S is an \mathfrak{S} -semigroup, then $l\leq 2$ and $m\leq 2$.

Theorem 2.1. A finite semigroup S is an \mathfrak{S} -semigroup of order ≥ 2 if and only if S is one of the following cases:

(1) a semilattice of order 2,

- (2) a z-semigroup of order 2,
- (3) a finite group of order ≥ 2 ,
- (4) Simp. $\left(G; \begin{pmatrix} e \\ e \end{pmatrix}\right)$,
- (5) Simp. (G; (e e)),
- (6) Simp. $\left(G; \begin{pmatrix} e & e \\ e & a \end{pmatrix}\right)$,

 $((e a))^{\prime}$

where e is a unit of G, $0 \neq a \in G$, and the order of G is ≥ 1 .

Corollary 2.1. A semigroup which contains no proper subsemigroup is either a semigroup of order at most 2 or a cyclic group of prime order ≥ 3 .

§3. \mathfrak{G} -semigroups. It goes without saying that any semigroup of order 2 and any indecomposable semigroup are \mathfrak{F} -semigroups.

Lemma 3.1. A \mathfrak{H} -semigroup is simple and so completely simple.

Lemma 3.2. If a \mathfrak{H} -semigroup S has zero 0, then S is an indecomposable semigroup [2].

Corollary 3.1. If a \mathfrak{H} -semigroup S has a non-trivial decomposition, then S is a simple semigroup without zero.

Lemma 3.3. Let S=Simp. $(G; (p_{ji}) i=1, \dots, m; j=1, \dots, l)$. If S is a \mathfrak{H} -semigroup, then $m \leq 2$ and $l \leq 2$. Therefore S is a simple semigroup whose defining matrix is $\begin{pmatrix} e \\ e \end{pmatrix}$ or $(e \ e)$ or $\begin{pmatrix} e & e \\ e & a \end{pmatrix}$ $a \neq 0$.

On the other hand we can prove

Lemma 3.4. Simp. $\left(G; \begin{pmatrix} e \\ e \end{pmatrix}\right)$, Simp. $\left(G; (e \ e)\right)$ and Simp. $\left(G; \begin{pmatrix} e \ e \end{pmatrix}\right)$ are all \mathfrak{F} -semigroups.

Thus we have

Theorem 3.1. A finite semigroup of order ≥ 2 is a \mathfrak{H} -semigroup if and only if it is one of the following seven cases:

- (1) a semilattice of order 2,
- (2) a z-semigroup of order 2,
- (3) an indecomposable finite semigroup of order >1,
- (4) a finite group of order ≥ 2 ,
- (5) Simp. $(G; \begin{pmatrix} e \\ e \end{pmatrix})$,

- (6) Simp. (G; (e e)),
- (7) Simp. $\left(G; \begin{pmatrix} e & e \\ e & a \end{pmatrix}\right)$,

where G is a finite group of order ≥ 1 , e is a unit, and $a \neq 0$.

§4. Remark. As consequence of §2, we see that \mathfrak{S} -property implies \mathfrak{S}_1 -property, that is, \mathfrak{S} -property and \mathfrak{S}_1 -property are equivalent. Also, from the result of §3, it follows that \mathfrak{S} -property implies \mathfrak{F} -property; and moreover \mathfrak{F} -property implies \mathfrak{S} -property under the assumption that S is not an indecomposable semigroup.

References

- [1] D. Rees: On semigroups, Proc. Cambridge Philos. Soc., 36, 387-400 (1940).
- T. Tamura: Indecomposable completely simple semigroups except groups, Osaka Math. Jour., 8, 35-42 (1956).
- [3] —: Finite semigroups in which Lagrange's theorem holds, Jour. Gakugei, Tokushima Univ., 10 (to be published).
- [4] —: Decompositions of a completely simple semigroup (to appear).