50. On Characterizations of Projection Operators

By Kazumi NAKANO

(Comm. by K. KUNUGI, M.J.A., April 12, 1960)

Let R be a lattice ordered linear space. A linear manifold M of R is said to be normal, if for any $a \in R$ we can find $x, y \in R$ such that a=x+y $x \in M$, $y \in M^{\perp} = \{y; x \perp y \text{ for } x \in M\}$. Such a dependence of $x \in R$ such that $T = \{y; x \perp y \text{ for } x \in M\}$.

Such x depends only on a. So putting Ta=x we can define an operator T from R to M. This operator is called a *projection operator* (cf. H. Nakano: Modulared Semi-ordered Linear Space, Tokyo (1950)).

Here, we will consider some characterizations of projection operators. Theorem 1. A linear operator T on R is a projection operator, if and only if it satisfies (1), (2).

T(Tx) = Tx(1) $0 \le Tx \le x$ (2)for all $x \ge 0$. *Proof.* Every projection operator is always linear and satisfies (1), (2) (cf. H. Nakano: Modulared Semi-ordered Linear Space, Tokyo (1950)). Now, we suppose that a linear operator T satisfies conditions (1), (2). Putting $T^{\perp} = I - T$, T^{\perp} is obviously linear and satisfies conditions (1), (2) too. When we consider two subsets of R $A = \{x; Tx = 0\}$ and $B = \{x; T^{\perp}x = 0\},\$ we have $A = T^{\perp}R$, B = TR, because $T(T^{\perp}a) = T(a - Ta) = Ta - T(Ta) = Ta - Ta = 0,$ for any $a \in R$, and hence $T^{\perp}a \in A$. On the other hand, we see $a = a - Ta = T^{\perp}a$, for every $a \in A$, therefore $A = T^{\perp}R$. We obtain B = TR likewise. Every linear operator T, subject to the condition (2), satisfies $T(x \simeq y) = Tx \simeq Ty.$ Because we see first obviously $Tx \, Ty \geq T(x \, y)$. On the other hand, we have $x = Tx + T^{\perp}x \ge Tx \cap Ty + T^{\perp}(x \cap y),$ $y = Ty + T^{\perp}y \ge Tx Ty + T^{\perp}(x y)$ and hence $x - y \ge Tx - Ty + T^{\perp}(x - y)$ that is, $T(x , y) \ge Tx , Ty$. Therefore T(x , y) = Tx , Ty.

Then we find easily

 $T(x \smile y) = Tx \smile Ty,$

because T is linear.

For any $x \in A$, $y \in B$ we have

$$0 \leq T(|x| | | y|) \leq T|x| = Tx^{\smile}(-Tx) = 0$$

and

$$0 \leq T^{\perp}(|x|_{\frown}|y|) \leq T^{\perp}|y| = T^{\perp}y^{\smile}(-T^{\perp}y) = 0,$$

therefore

$$|x| | |y| = 0.$$

Consequently $A \perp B$, that is, $TR \perp T^{\perp}R$. Thus T is a projection operator by definition.

Theorem 2. A linear operator T on R is a projection operator if and only if it satisfies the following conditions.

(1)	T(Tx) = Tx	
(2)	$Tx \perp (x - Tx)$	for all $x \in R$.
D 4 4		

Proof. A projection operator is linear and satisfies (1) (Theorem 1) and obviously it satisfies (2) by definitions. When a linear operator satisfies (1), (2), we can see easily

$$(|Tx|-|x|) | Tx| \leq |x-Tx|| | Tx| = 0$$

by the condition (2).

Therefore

$$|Tx| \leq |x| \leq 0 = |x|,$$

and hence $Tx \leq x$ for $x \geq 0$. Likewise we can prove $T^{\perp}x \leq x$ for $x \geq 0$. Consequently T satisfies the condition of Theorem 1, and hence T is a projection operator.

Now we want to remark that the condition (2) in Theorem 1, may be replaced by one of the following conditions:

2^\prime)	$y _ Tx = Tx _ Ty$	for x, $y \ge 0$
2'')	T x = Tx x	
2''')	$y _ Tx = x _ Ty$	for $x, y \ge 0$.

Because, putting x=0 or x=y in 2'), we obtain $T \ge 0$ or $T \le 1$ respectively. 2'') implies obviously $0 \le T \le 1$. Putting y=0 or y=Tx in 2'''), we obtain $T \ge 0$ or $T \le 1$ respectively.

No. 4]