50. On Characterizations of Projection Operators

By Kazumi Nakano
(Comm. by K. Kunugi, m.J.A., April 12, 1960)

Let R be a lattice ordered linear space. A linear manifold M of R is said to be normal, if for any $a \in R$ we can find $x, y \in R$ such that

$$
a=x+y \quad x \in M, \quad y \in M^{\perp}=\{y ; x \perp y \text { for } x \in M\}
$$

Such \rightsquigarrow depends only on a. So putting $T a=x$ we can define an operator T from R to M. This operator is called a projection operator (cf. H. Nakano: Modulared Semi-ordered Linear Space, Tokyo (1950)).

Here, we will consider some characterizations of projection operators.
Theorem 1. A linear operator T on R is a projection operator, if and only if it satisfies (1), (2).

$$
\begin{equation*}
T(T x)=T x \tag{1}
\end{equation*}
$$

(2)
$0 \leqq T x \leqq x$
for all $x \geqq 0$.
Proof. Every projection operator is always linear and satisfies (1),
(2) (cf. H. Nakano: Modulared Semi-ordered Linear Space, Tokyo (1950)).

Now, we suppose that a linear operator T satisfies conditions (1),
(2). Putting $T^{\perp}=I-T, T^{\perp}$ is obviously linear and satisfies conditions
(1), (2) too. When we consider two subsets of R

$$
A=\{x ; T x=0\} \quad \text { and } \quad B=\left\{x ; T^{\perp} x=0\right\}
$$

we have $A=T^{\perp} R, B=T R$, because

$$
T\left(T^{\perp} a\right)=T(a-T a)=T a-T(T a)=T a-T a=0
$$

for any $a \in R$, and hence $T^{\perp} a \in A$. On the other hand, we see

$$
a=a-T a=T^{\perp} a
$$

for every $a \in A$, therefore $A=T^{\perp} R$. We obtain $B=T R$ likewise.
Every linear operator T, subject to the condition (2), satisfies

$$
T(x \frown y)=T x \frown T y .
$$

Because we see first obviously

$$
T x \frown T y \geqq T(x \frown y)
$$

On the other hand, we have

$$
\begin{aligned}
& x=T x+T^{\perp} x \geqq T x \frown T y+T^{\perp}(x \frown y), \\
& y=T y+T^{\perp} y \geqq T x \frown T y+T^{\perp}(x \frown y)
\end{aligned}
$$

and hence

$$
x \frown y \geqq T x \frown T y+T^{\perp}(x \frown y),
$$

that is,

$$
T(x \frown y) \geqq T x \frown T y
$$

Therefore

$$
T(x \frown y)=T x \frown T y
$$

Then we find easily

$$
T(x \smile y)=T x \smile T y
$$

because T is linear.
For any $x \in A, y \in B$ we have

$$
0 \leqq T(|x| \frown|y|) \leqq T|x|=T x \smile(-T x)=0
$$

and

$$
0 \leqq T^{\perp}(|x| \frown|y|) \leqq T^{\perp}|y|=T^{\perp} y \smile\left(-T^{\perp} y\right)=0
$$

therefore

$$
|x| \frown|y|=0 .
$$

Consequently $A \perp B$, that is, $T R \perp T^{\perp} R$. Thus T is a projection operator by definition.

Theorem 2. A linear operator T on R is a projection operator if and only if it satisfies the following conditions.

$$
\begin{equation*}
T(T x)=T x \tag{1}
\end{equation*}
$$

(2) $T x \perp(x-T x) \quad$ for all $x \in R$.

Proof. A projection operator is linear and satisfies (1) (Theorem 1) and obviously it satisfies (2) by definitions. When a linear operator satisfies (1), (2), we can see easily

$$
(|T x|-|x|) \frown|T x| \leqq|x-T x| \frown|T x|=0
$$

by the condition (2).
Therefore

$$
|T x| \leqq|x| \smile 0=|x|
$$

and hence $T x \leqq x$ for $x \geqq 0$. Likewise we can prove $T^{\perp} x \leqq x$ for $x \geqq 0$. Consequently T satisfies the condition of Theorem 1 , and hence T is a projection operator.

Now we want to remark that the condition (2) in Theorem 1, may be replaced by one of the following conditions:

$$
\begin{array}{lll}
\left.2^{\prime}\right) & y \frown T x=T x \frown T y & \text { for } x, y \geqq 0 \\
\left.2^{\prime \prime}\right) & T|x|=|T x| \frown|x| & \\
\left.2^{\prime \prime \prime}\right) & y \frown T x=x \frown T y & \text { for } x, y \geqq 0 .
\end{array}
$$

Because, putting $x=0$ or $x=y$ in 2^{\prime}), we obtain $T \geqq 0$ or $T \leqq 1$ respectively. $2^{\prime \prime}$) implies obviously $0 \leqq T \leqq 1$. Putting $y=0$ or $y=T x$ in $2^{\prime \prime \prime}$), we obtain $T \geqq 0$ or $T \leqq 1$ respectively.

