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Up to this time, theories of electromagnetic field have been studied
mainly in isotropic and homogeneous media. Recently the studies of
the fields in anisotropic inhomogeneous media have increased their
importance in connection with the advances in microwave techniques
or in other branches of electric engineerings and physics. But since
the rigorous analysis of the fields in such media is so difficult and.
complicated, it seems to the author that there are few papers on
these themes which are rigorous and general enough. In this paper,
he will develop the mathematical theory of electromagnetic fields in
anisotropic inhomogeneous media in its general form.

1. Any electromagnetic phenomena in a macroscopic scale are
represented completely by vector functions E, H, D, B, K and a scalar
function p, which satisfy Maxwell’s equation. In addition to the
equation, there are three relations between them. In the old theory
in isotropic and homogeneous media, they were D=eE, B=tH and
K=aE where , / and a are scalar constants characteristic of the
medium. In this paper we take them as follows: D=E-t- $]H,
B=/I-I+E, K--aE, where a roman letter in a bracket, such
as [s, represents a 3 3 matrix, the elements s, (i, j= 1, 2, 3) of which
are functions of position. The fact that the characters of the medium
are represented by matrices shows that the medium is anisotropic,
and that the elements of these matrices are the functions of position
shows that the medium is inhomogeneous. Of course these repre-
sentations include all of the isotropicity and anisotropicity, homogeneity
and inhomogeneity of the medium. Because of s etc., it is not
possible to eliminate E or H from Maxwell’s equation, hence the old
method of analysis is not available. A new method will be investi-
gated in the followings.

Let ,/ and a be arbitrary scalar constants, and put tj ij ij,,--/:--/@., aq a,.--a. Suppose s’ is a matrix the elements of
which are s, then [e=sU+_s’, where U is the unit matrix. Similar
holds for and aJ. Hence Maxwell’s equation will be reduced to
1 ) vE=--iw/H--K,

where Kn=io([l’H+_E) and K= [a’+i(os’E+io[_H, when the
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fields depend on time t through the factor et with a complex constant
o. (1) provide the fields in isotropic and homogeneous medium with
the medium constants z, / and a, in the presence of the distributions
of the densities of electric current K and magnetic current Kn. If
the time dependence of the fields is more general, the Laplace trans-
formation about t will give E=--p/E--K, H=(a+p)E+K,
K-p(I’tt+[E)-Bo, K-a’+p’E+pH+Do, where p is the
parameter of the transformation, and Do, B0 are the initial values of
D and B respectively. These are formally the same as (1), hence we
shall study about (1) only in the followings.

If constants ] and are defined as follows:
-(a+ioe), two equations of (1) will be unified as
( 2 ) gF=F+G,

where F-E+H and G----K-----K. Separating (2) about ],*) it

reduces to (1), i.e. (1) and (2) are equivalent to each other. Thus we
have diminished the number of unknowns.

2. It is desirable to have the integral theorem and the integral
representation for the vector F introduced in the preceding section.
Let D be a domain, S be its boundary, and n be the outer normal

unit vector of D on S. Suppose ---exp (--iR)/4=R, where R-PQ
is the distance of two points P and Q, and is one of the roots of, of which Im <: 0.

Theorem 1. Assume that i) S is a sum of finite number of regular
Jordan closed surfaces, ii) F and G are continuous functions in D+S,
with the continuous bounded partial derivatives of the first order in
D and satisfy (2) there. Then

f U(P, V)dZQ-f V(P, Q)dVQ, (Re D)F(P)

Di4v F(P)

where indicates that the integral is taken in the sense of Cauchy’s
principal value of a singular integral, /2 is the solid angle at P
intercepted by S, and

U(P, Q)--1Vq.nxFV+nXFQ
XVqq-nxFq-(n.G)qVq

v(P, Q)

*) M. Itoh" Properties of complex oscillating electromagnetic field and unified
equation for electromagnetic oscillation, Trans. I. E. E. Japan, 3, no. 4 (1942).
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Theorem 2. Under the same conditions as in Theorem 1,

f f f

5

where V()--V--n. If PS, must be taken in the both hand sides.n
More general theorems about an arbitrary vector function and

a scalar wave function can be proven, by the help of Gauss’ diver-
genee theorem, from which we can deduce Theorems 1 and 2, by
replacing and with F and respectively. The grad. of (4) will
be (5), and conversely the div. of (5) will be (4). Therefore (4) and
(5) are equivalent to each other. The importance of (4) and (5) exists
in that the singularity of the integrand in the first term of these
equations at P=Q is lowered by the second and third terms of them.
(2) and (3) are a generalization of Cauehy-Riemann equation and
Cauehy’s integral representation in the theory of two dimensional
complex function respectively. In fact, it will be proven that the
former reduces to the latter when we assume that G=0 (this means
that the medium is isotropie and homogeneous) 3/z--O, F--O (this
means that the field is two dimensional) and -0 (this means that
--0, or that the field is static one). Thus our theory involves the
theory of function of two dimensional complex variable as its special
ease, and makes a function theoretic investigation of the electro-
magnetic fields.

Theorem 3. (6) rV).nzFJ+n.(F+G)--O. (PS)

(4), (PS). Being continuous, --0 every-From

where, hence V0--0. But V0 is discontinuous on S, the amount
of which is . Therefore --0. Conversely, we shall have (4)from
(6) easily. Thus we have proven not only (6) but the equivalence of
(4) and (6).

Theorem 4. Let J be an arbitrary tangential vector defined on
S, and--w-V.J. Suppose G is an arbitrary vector function con-
tinuous in D+S with continuous partial derivatives of the first order
in D. Then the function F, defined as

F-fV+J V+,J-(n.G)VdS
( 7

XVQ2GQ}dVQ



No. 8] Electromagnetic Fields in Anisotroplc Inhomogeneous Media 489

satisfies (2) when P e D, and (8) V XF=F when PD+S.
Calculation of the limiting values of the function F defined by

(7) as P6S tends to P0 S, leads to

x F,o- lim n xF,- l:-J,nP
"P">’P

y, 1+ n X (- V--JQ X/TQ-t-J- (n.G)j dS

fn o + +
This is a generalization of Plemelj’s theorem, from which we shall

--0-f*n0 {’ lv
(8) +Je V4+J-(n.G)eVe} dSe

Po

j-no {-("a)+a +a}odY

is the necessary and sufficient condition which J must satisfy, in
order that the tangential component nF of the function defined in
(7) has the limiting value J when PeD and PPoeS.

B) (8) is the necessary and sufficient condition which J must
satisfy in order that the function F defined by (7) vanishes identically
when PD+S.

3. In this section, simultaneous integral equations will be given,
which will determine the components of the field. For the sake of
brevity, we shall assume that there are two media separated by a
closed surface S, the inner medium is anisotropic and inhomogeneous,
while the outer one is isotropic and homogeneous, and that the fields
satisfy the radiation condition at infinity. Let the domains in the
interior and exterior of S be denoted as D- and D respectively,
and suppose n be the unit normal of D- on S. Quantities in D,
such as the fields and medium constants etc., will be distinguished
by suffix . for instance, E, H, and . According to the boundary

conditions on S, we shall have n E- n E (put as J), n X H- n

H+(=J),--(-),=-(-) where=V. InE]

and -V. InH]. Moreover, suppose that V.G-
V. [g’]H- (- pn) (Assumptions thatE-( --p), and V G-V__

[$]-[{]-[0] and n.G=O on S have been made for the sake of
brevity, which do not lose the essentials of analysis.) Then according
to Theorem 1, the fields in D will be expressed as follows:

have

Theorem 5. A)
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(9)
(P-eD-)

where U(P+, Q)= -mn(Q)Vq+ +JqVq+ +r/:,++Jq

U P+ Q -T-- _1_ m, Q Vq
+ q_jQ V,p,+ + _7_b

:

V(P-, Q)-- {p(Q)VQ-+--G(Q) VQ-+(-)"-G(Q)}
vs(P-, Q)- ,o,(),-+ --z-_a() x ’.-+(.-)No-aA)

and also ’,l+=--exp(--i.R)/4R. E+( and //+( are the surface
integrals over S+( which may exist in D+ and enclose the sources
there. They are assumed to be known functions, which represent the

primary incident fields. If J, J, m and m on S, and p, 0, G and
in D-are obtained, (9) will determine the fields in D+ completely.

Prom these, he simultaneous integral equations about these unknowns
can be obtained as follows:

(10)

f Q)dS. +H+’)(P+), (P+eD+)
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-jT. ’+’.t(P-, Q)z +J(-)7.

+f{,:(Q)+. X(P-, Q)+V--Gn(Q). X(P-,- -ge" a’+i’eE-(P.)
1 I
$ (+z::)-:(-)+ +-

.(P-) +

f. [+z’u(p-, V)Z++f(-)::.

where U--/-U++/+U, U=--U+++U}, U-U+U,
U+U and i. Gs ’ea,i .G{as-as} + i. G[as-as} + is .G{a

-a}. X is a vector, the elements of which are Z,=(a-),
where a, represent the elements of the matrices [a, [e and
These quantities, the suffix of which are (i)or--(i), are known func-
tions constructed with E( and H.

It is worth noting that the solutions of these equations determine
the fields exactly, because (9) satisfies Maxwell’s equations by virtue
of Theorem 4, and satisfies the boundary conditions on S by virtue
of Theorem 5 and (10). With these simultaneous integral equations
of Fredholm type, we shall be able to study about the properties of
the fields, for instance the existence or the uniqueness of the solutions.
(There is only one term which is yet singular in (10), which will be
removed by the use of the Bertrand-Poincar theorem, the result of
which is omitted to describe here.)


