111. On Certain Triangulated Manifolds

By Masahisa Adachi

Mathematical Institute, Nagoya University (Comm. by K. Kunugi, M.J.A., Oct. 12, 1960)

V. Rohlin and A. Schwarz [5] and R. Thom [7] defined the combinatorial Pontrjagin classes of triangulated manifolds and proved the existence of triangulated 8-dimensional manifolds which admit no differentiable structures compatible¹⁾ with their given triangulations. A corresponding result for triangulated 16-dimensional manifolds was proved by K. Srinivasacharyulu [6]. The purpose of this note is to prove the corresponding theorems for the dimensions of the form 4k ($2 \le k \le 14$, $k \ne 3$).

In §1 certain triangulated 4k-dimensional manifolds are constructed and studied. In §2 the theorem is proved.

Our method is quite analogous to that of R. Thom, and closely related with J. Milnor [4]. The word n-manifold will always be used for a compact oriented n-dimensional manifold without boundary. The word "differentiable" will be used to mean "differentiable of class C^{∞} ".

1. Let us consider two differentiable mappings of spheres into rotation groups:

$$f_1: S^m \to SO(n+1), \quad f_2: S^n \to SO(m+1).$$

For these mappings Milnor [4] defined the differentiable (m+n+1)-manifold $M(f_1, f_2)$ with the following properties:

- i) If the mapping f_1 carries S^m into the subgroup $SO(n) \subset SO(n+1)$, then $M(f_1, f_2)$ is a topological sphere.
- ii) There exists a differentiable bounded manifold²⁾ W whose boundary is $M(f_1, f_2)$.

Hereafter we assume that

(*) if m=n, the mappings f_1, f_2 both carry S^m into the subgroup $SO(m) \subset SO(m+1)$.

Then $M(f_1, f_2)$ is always a topological (m+n+1)-sphere.³⁾ Furthermore, the differentiable (m+n+1)-manifold $M(f_1, f_2)$ has a C^{∞} -triangulation (L, g), and this C^{∞} -triangulation can be extended to a C^{∞} -triangulation (K, f) of the differentiable (m+n+2)-manifolds W. Then L is a combinatorial manifold and K is a combinatorial bounded manifold whose boundary is L (cf. Whitehead [8], Milnor [2]).

¹⁾ For the precise definition, see Whitehead [8], Milnor [2].

²⁾ bounded manifold=variété à bord.

³⁾ Cf. Milnor [4].

Let T be the space formed from the manifold W by attaching a cone C over the boundary $M(f_1, f_2)$. Since $M(f_1, f_2)$ is a topological (m+n+1)-sphere, it follows that T is an (m+n+1)-manifold. The triangulation (K, f) of W gives rise to a triangulation (J, h) of the (m+n+2)-manifold T. Then we have the following commutative diagram:

$$|L| \xrightarrow{i_1} |K| \xrightarrow{i_2} |J|$$
 $g \downarrow \qquad f \downarrow \qquad h \downarrow \qquad M \xrightarrow{\overline{i_1}} W \xrightarrow{\overline{i_2}} T$

where |L|, |K|, |J| are the underlying topological spaces of the simplicial complexes L, K, J, and $i_1, \overline{i_1}, i_2, \overline{i_2}$ are the inclusion maps, and $M=M(f_1, f_2)$.

Hereafter we assume that

$$m=4r-1$$
, $n=4(k-r)-1$, $1 \le r \le k-r$.

We shall study on the triangulated manifold (J, h; T).

a) Cohomology of T

The cohomology groups $H^i(T, Z)$ are isomorphic to the cohomology groups $H^i(W, M; Z)$ (i>0). It follows from Milnor [4] that

$$H^{i}(T, Z) = \begin{cases} Z, & i=0, 4r, 4(k-r), 4k, \\ 0, & \text{otherwise.} \end{cases}$$

We shall denote by α , β the generators in the dimension 4r, 4(k-r), respectively, then $\alpha\beta$ is the generator in the dimension 4k.

b) Index of T

The index I(T) of T is equal to zero. In case $m \neq n$, it is trivial. In case m=n, it follows from the assumption (*) (cf. Milnor [4, Lemma 4]).

c) Combinatorial Pontrjagin classes of J

Let $i_2: K \to J$ be the inclusion map. Then the homomorphisms $(i_2)^*: H^q(J,G) \to H^q(K,G)$ induced by i_2 are bijective for $0 \le q < 4k$ for any abelian group G. Since L is a triangulated (4k-1)-sphere, $j^*: H^q(K,L;G) \to H^q(K,G)$ are bijective for 0 < q < 4k-1. Moreover we have $j^*: H^q(J,J_0;G) \cong H^q(J,G)$ for q>0, where $(J_0,h|J_0)$ is the triangulation of the cone C induced from (J,h). Let Q be the ring of rational numbers. As is remarked in Milnor [3, Chapter XVI, 4], for bounded homology manifold (K,L) we can define the cohomology classes $l_i(K,L) \in H^{4i}(K,L;Q)$ and the combinatorial Pontrjagin classes $p_i(K,L) \in H^{4i}(K,L;Q)$ in the same way as for the homology manifold. We shall denote

$$l_i(K) = j^*(l_i(K, L)),$$

 $p_i(K) = j^*(p_i(K, L)).$

Let $p_i(J) \in H^{4i}(J, Q)$ be the *i*-th combinatorial Pontrjagin class of the homology manifold J. Then we have

Lemma 1. For 0 < i < k,

$$(i_2)^*(p_i(J)) = p_i(K).$$

Proof. We shall prove the Lemma using the definitions and the notations of Milnor [3, Chapter XVI]. By the definition of the combinatorial Pontrjagin classes, $p_i(J)$ and $p_i(K, L)$ are polynomials of $l_j(J) \in H^{4j}(J, Q)$ and $l_j(K, L) \in H^{4j}(K, L; Q)$, $1 \le j \le i$, respectively. So it is sufficient for us to prove

$$(i_2)^*(l_i(J)) = l_i(K) = j^*(l_i(K, L)), \text{ for } 0 < i < k.$$

Let \sum^{4k-4i} be the boundary of a (4k-4i+1)-simplex, and σ be the fundamental cohomology class of \sum^{4k-4i} . Let μ, ν be the fundamental homology class of (K, L) and J, respectively. By the definition of $l_i(K, L)$, for any simplicial map $\widetilde{\varphi}: (K, L) \to (\sum^{4k-4i}, a)$, where a is a vertex of \sum^{4k-4i} , we have

$$< l_i(K, L) \smile (\widetilde{\varphi})^*(\sigma), \ \mu > = I(\widetilde{\varphi}).$$

Then there exists a simplicial map $\widetilde{\phi}$ such that the following diagram is commutative:

$$(K, L) \xrightarrow{\widetilde{\varphi}} (\sum^{4k-4i}, a)$$

$$\widetilde{i_2} \xrightarrow{\widetilde{\varphi}} (J, J_0),$$

where \tilde{i}_2 is the inclusion map. Corresponding to this diagram, we have also the following commutative diagram:

$$K \xrightarrow{\varphi} \sum_{i_2}^{4k-4i}$$

$$J.$$

Then we have

By the definition of $I(\tilde{\varphi})$, $I(\psi)$, we have $I(\tilde{\varphi}) = I(\psi)$. By the uniqueness of $l_i(K, l)$, we obtain the assertion.

2. First recall the index theorem of Hirzebruch [1]. If V is

a differentiable 4k-manifold having Pontrjagin classes p_1, p_2, \dots, p_k , then the index I(V) is equal to $L_k(p_1, p_2, \dots, p_k)$ [V], where L_k is a certain polynomial. The coefficients s_k of p_k in L_k are expressed in terms of the Bernoulli numbers B_k as follows:

$$s_k = \frac{2^{2k}(2^{2k-1}-1)B_k}{(2k)!}.$$

Let $p_r: \pi_{4r-1}(SO(q)) \rightarrow Z$ be the Pontrjagin homomorphisms defined in Milnor $\lceil 4 \rceil$.

Lemma 2 (Milnor [4]). If q>2r, then there exists an element $(f)\in\pi_{4r-1}(SO(q))$ such that $p_r(f)\neq 0$ and the prime factors of $p_r(f)$ are all less than 2r.

Combining Lemmas 1, 2, we have

Theorem 1. Suppose that r is an integer satisfying

$$k/3 < r \le k/2$$
.

If the denominator of $s_r s_{k-r}/s_k$ contains a prime factor $\geq 2(k-r)$, then there exists a triangulated 4k-manifold T which admits no differentiable structures compatible with its given triangulation (J, h).

Proof. Suppose that the triangulated manifold (J, h; T) admits a differentiable structure \mathfrak{D}_J compatible with the triangulation (J, h). Then \mathfrak{D}_J may define another differentiable structure \mathfrak{D}_K on the underlying manifold of W compatible with the triangulation (K, f). We denote this differentiable manifold by W'. Let

$$\rho^*: H^q(T,Z) \to H^q(T,Q)$$
 $\rho^*: H^q(W,Z) \to H^q(W,Q)$

be the canonical homomorphisms induced by the injection $\rho: Z \to Q$ of the coefficient groups. Then, by the compatibility of the combinatorial Pontrjagin classes, we have

$$h^* \circ \rho^*(p_i(T)) = p_i(J),$$

 $f^* \circ \rho^*(p_i(W')) = p_i(K) = f^* \circ \rho^*(p_i(W)).$

However, by Milnor $\lceil 4 \rceil$ we know

$$p_r(W) = \pm p_r(f_1) \cdot (i_2)^*(\alpha),$$

 $p_{k-r}(W) = \pm p_{k-r}(f_2) \cdot (i_2)^*(\beta).$

Therefore, by Lemma 1 we have

$$\begin{array}{l} h^{*\circ}\rho^{*}(p_{r}(T)) \!=\! p_{r}(J) \!=\! (i_{2})^{*^{-1}}(p_{r}(K)) \\ =\! (i_{2})^{*^{-1}}\!\circ\! f^{*\circ}\rho^{*}(p_{r}(W)) \\ =\! h^{*\circ}(i_{2})^{*^{-1}}\!\circ\! \rho^{*}(\pm p_{r}(f_{1})\!\cdot\! (i_{2})^{*}(\alpha)) \\ =\! \pm p_{r}(f_{1})\!\cdot\! h^{*\circ}\rho^{*}(\alpha). \end{array}$$

Since $H^*(T,Q)$ has no torsion and h^* is bijective, we have

$$p_r(T) = \pm p_r(f_1) \cdot \alpha$$
.

Similarly we have

$$p_{k-r}(T) = \pm p_{k-r}(f_2) \cdot \beta$$
.

Using the index theorem

$$I(T) = L_k(p_1, p_2, \dots, p_k) \lceil T \rceil, \quad p_i = p_i(T),$$

it follows that4)

By Lemma 2, for k/3 < r, we can take f_1, f_2 such that $p_r(f_1)p_{k-r}(f_2) \neq 0$ and the prime factors of $p_r(f_1)p_{k-r}(f_2)$ are all less than 2(k-r). If $k/3 < r \le k/2$ and the denominator of $s_r s_{k-r}/s_k$ contains prime factor $\ge 2(k-r)$, $p_k[T]$ is not an integer. This is a contradiction. Thus we have the theorem.

Theorem 2. For $2 \le k \le 14$, $k \ne 3$, there exist triangulated 4k-manifolds (J, h; T) which admit no differentiable structures compatible with their given triangulations (J, h).

Proof. For such k, it is checked by Milnor [4] that there exists r such that the assumption of Theorem 1 is satisfied.

References

- [1] F. Hirzebruch: Neue topologische Methoden in der algebraischen Geometorie, Springer (1956).
- [2] J. Milnor: On the relationship between differentiable manifolds and combinatorial manifolds (mimeographed note), Princeton University (1956).
- [3] J. Milnor: Lectures on characteristic classes, Princeton University (1958).
- [4] J. Milnor: Differentiable structures on spheres, Amer. J. Math., 81, 962-972 (1959).
- [5] V. Rohlin and A. Schwarz: The combinatorial invariance of Pontrjagin classes (in Russian), Doklady Akad. Nauk S.S.S.R., 114, 490-493 (1957).
- [6] K. Srinivasacharyulu: Sur certaines variétés triangulable, C. R. Acad. Sci. Paris, 250, 2316-2317 (1960).
- [7] R. Thom: Les classes caractéristiques de Pontrjagin des variétés triangulées, Symp. Intern. Topologia Algebrica, 54-67 (1958).
- [8] J. H. C. Whitehead: On C¹-complexes, Ann. of Math., **41**, 809-824 (1940).

⁴⁾ The coefficients of $p_r p_{k-r}$ in L_k are calculated in Milnor [4].