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Faculty of Education, Kumamoto University
(Comm. by K. KUNUGI, M.J.A., Dec. 12, 1961)

In this paper we have mainly two aims: one is to express a
normal operator in a Hilbert space by continuous linear functionals
associated with all elements of a complete orthonormal set in that
space and the other is to construct a normal operator with the
arbitrarily prescribed point spectrum. We can yet treat these two
problems at the same time.

Definition. Let $ be the complex abstract Hilbert space which
is complete, separable, and infinite dimensional; let {¢.},.;ss,... and
{¥u}uz1,2,... both be incomplete orthonormal infinite sets which have
no element in common and together form a complete orthonormal
set in 9; let {4,},.1,25... be an arbitrarily preseribed bounded sequence
in the complex plane; let (u,;) be an infinite unitary matrix with

[u,,]51,5=1,2,8,---; let ?If,,=gu,.,wlr,; let N be the operator defined
by

Nx=ji}:12.(x. sov)so,-l-cg(x, V)7,
for every xc9 and an arbitrarily given constant c; let L, be the
continuous linear functional associated with an arbitrary element f

in ; and let the operator N and the element Nz, defined above, be
denoted symbolically by

(1) N=§Z,¢,®L,,+cg?f,.®L,p
and
(2) No=310.0.0L,, @)+ 3 W, DLy, (@)

respectively. Then the sum of the two series in the right-hand side
of (1) is called “the functional-representation of the operator N”.

Theorem 1. The functional-representation of the operator N
defined by (1) converges uniformly and N is a bounded normal
operator with the point spectrum {1,} on . In addition, putting
M=max (S, |¢|") where S=sup|4,[% || N||=VM.

Proof. Since, by hypotheses, a complete orthonormal set is
formed by the two sets {¢,} and {V,}, we have for every zc¢

& =§a,¢, + g]bn‘!'m
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where a,=L, (x) and by=L,(x). On the other hand, since, by hy-
potheses, (u;,) is an infinite unitary matrix,

> = _ (1 (z=x)
e =1p ()

and
1 (p=x)

et =1 (er) °
In addition, since l|x||2=i|a,|2+§}|b, |*< oo, there exists a posi-
v=1 #=1
tive integer P such that, for an arbitrarily given >0,
S+ 3y <ellz /M, @0,

where M is the constant defined in the statement of the present
theorem.

In consequence, it is easily verified by direct computations that

$0.8L,, @)+ S¥,OLy, @)

= aa, [ ]e 3 b [
v=P p=P
<el|=||®
This result shows that
SIA0.OL,, +e3,8L,, | <{ €

and hence that the functional-representation of N converges uni-
formly.
Similarly we have

Vo< M (Sl a4+ 5215, = M| ] < oo
for every zc$. Hence N is a bounded operator.

Moreover, when M=S we can easily verify by putting z=¢,
that || N|| equals ¥M, whereas when M=|c|* we can show by setting
x=1v, the validity of the relation ||Nv.|*=|c|?|[¥.||* which implies
that || N|| is equal to M.

Next we shall prove that N is normal.

Since the identity operator I and any ye® are expressible in the
forms

I=NZ:}1%®L,,,+I%%®L¢”
and
y=é}1¢u®L,,(y)+g%®L¢,.(y)
respectively, it is a matter of simple manipulations to show that

(N5, 1) =32, Lo @ L+ o ST.OL, @), S4,8L,,))
(3) =31 Lo @) L)+ 0 2] Ste Lo, @ Lo (W),
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where L, (y) and L, (y) denote the conjugate complex numbers of
L,,(y) and L, (y) respectively.
We now put

vi=31ub,
and consider the operator N defined by
N=320.0L, + ¢\ VI®L,, .
Then, by reasoningmel:xactly like F:lllat applied to the series of

the right-hand side of (1), we can prove that the above functional-

representation of N converges uniformly. Moreover, in the same
manner as that used to show (3), we can show the validity of the
relation

(4) (@ Ny)=312.L (@) Ly @)+ 0 3] 3100 Lo (®) L0, 0)
for every pair of z, ye®.

From the relations (8) and (4), it follows at once that the
adjoint operator N* of N is given by N.

Furthermore,

NN*x:N[é}llsoy@L%(x)—l-Eg qf;f®L¢,,(x)]
|4 O®L @) +le S B L@ L, @D} T,
|4 0B Ly, @)+ el 3 (S Lo @)} 7,

i

oo
>
v=1
)
2]
v=1

and
N*Nm:N*[;::l x,go,®L,,(x)+cg%@w,,(w)]

=§}ll A, [%0,®L, (x)+]|c |2§: {% Lm(x)Lh(;Ir,)} U

=314, PO L, @)+ o5 S Lo @) 72
for every xe$. On the other hand, it is seen with the aid of the
previously described relations between the u’s that

I b

#=1 \s=1 £=1

N XINC)
S (Su L@ rr =5 Su Lo | St |
=3 ¥.®L.@).

Applying the last two results to the expansions of NN*z and
N*Nz, we have the relation NN*x=N*Nzx holding for every ze¢9.
Thus N is a normal operator.



No. 10] Functional-Representations of Normal Operators 617

It remains only to prove that the set {4,} is the point spectrum
of N. As a first step it is, however, clear that Ney,=2,¢, for
v=1,23,---.

We suppose, contrary to what we wish to prove, that N has
an eigenvalue a different from 1,,v=1,2,38,---, and denote by K,
the eigenprojector of N corresponding to the eigenvalue «. Since
every eigenelement of N for a is orthogonal to all elements of {p,},
it is expressed by a linear combination of elements belonging to {y,}.
In consequence, we may and do denote an arbitrary eigenelement
Jf« of N corresponding to the eigenvalue a by >la, ¥, ¥oe{¥.}. Then,

»

by means of the relations K.f.=/f, and (I—K.)¥}, ¢,)=0,v=1,2,8,-- -,
and of Parseval’s formula, we have
0=/ Sa, I~ K4

=31 Sla, (K ¥
so that
ga’p((I—Ka)‘I’;n 1”#):0’ /“:1’ 2: 31' Tt .
Moreover, since the eigenspace of N corresponding to the eigenvalue
a is given by K, and hence since the final velations always hold for
all systems of the coefficients a, as far as >}|a, |’ <o, (I—K,)¥, van-
»

ishes, that is, K ¥,=v/, for every admissible p. As a result, we
find that
a¥, =NV,
=c3; V. ®L,,(¥7)

=c§u,ﬂh, (l Ujjy l:\:]')’

where j is uniquely determined by the condition Y ,=+v7}. This
result, however, is incompatible with the linear independence of V.,
#=1,2,8,- -, and hence the supposition concerning a must be rejected.

Thus the set {1,} gives the point spectrum of N, as we were to
prove,

With these results, the proof of the present theorem is complete.

Theorem 2. In Theorem 1, let A =2,=--:-=2,¢{1,} under the
condition that 1, be different from any A, for xk=m+1, m+42,---; let
K, be the eigenprojector corresponding to any eigenvalue 1, of N;
and let {K(2)} and 4 be the complex spectral family and the contin-
uous spectrum of N respectively. Then

( 5 ) Km=5§=l¢j®L¢jy
(6) f WK () =c3\¥,RL,,.

4

Proof. By hypotheses, it follows at once that
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_ |9 (-7:19 2,-+-,m)
K,p,= {0 GF=m+1,m+2,---),
while K, ¥,.=0 for #=1,2,8,---. Hence, by the use of the relation

= i¢,®L,,(x)+i\Ir,,®L¢”(w) holding for every z¢%, we have K,z
v= u=
=j§_}l¢,®L,,,(x) which implies that (5) holds.

Since, as shown in Theorem 1, the point spectrum of N is given
by {4,} itself,

N=SVAK.+ f 2K (2),

4
where 3V denotes the sum for all distinct eigenvalues 1,. In the

same manner as above, we have therefore
Ne=31,0,®L, (2)+ f ©dK (2
»=1
4

for every xze¢$. Comparing this equality with (2), we obtain the
desired relation (6).

The theorem has thus been proved.

Remark 1. Theorems 1 and 2 remain true, even if {4} is a
finite set (inclusive of the multiplicity of each of its distinet ele-
ments). In that case, of course, {¢,} is also a finite set. Moreover,
with very small modifications these theorems are valid, even if one
of the orthonormal sets {¢,} and {{y.} is complete and hence the
other is empty.

Remark 2. If the (one-dimensional or two-dimensional) measure
of 4 is not zero, it can not be admitted that {y,} is a finite set:
because the dimension of the orthogonal complement of the subspace
determined by all eigenelements of N is never finite in that case.

Remark 3. Both the {¥.} and {¥'}} are orthonormal sets orthogo-
nal to {o.}.



