139. Some Results in Lebesgue Geometry of Curves

By Kanesiroo Iseki
Department of Mathematics, Ochanomizu University, Tokyo

(Comm. by Z. Suetuna, m.J.A., Dec. 12, 1961)

1. Borel-rectifiability of a curve on a set. We shall resume the study of measure-theoretic properties of parametric curves set forth in our recent notes [4] and [5]. A curve φ, situated in a Euclidean space \boldsymbol{R}^{m} of any dimension, will be said to be Borelrectifiable (or B-rectifiable, for short) on a set E of real numbers, when and only when E admits an expression as the join of a sequence of sets which, if E is nonvoid, are relatively Borel with respect to E and on each of which φ is rectifiable. In other words, E can be covered by a sequence of Borel sets (in the absolute sense) on each of whose intersections with E the curve φ is rectifiable. As may be immediately seen, this is certainly the case when φ is countably rectifiable on E and at the same time continuous on E.

We are now in a position to generalize the theorem of [5]§3 to the following form, the proof being the same as before.

Theorem. For each function $f(t)$ which is Borel-rectifiable on a Borel set E, the multiplicity $N(f ; x ; E)$ is a measurable function of x and its integral over the real line coincides with $E(f ; E)$ and with $\Gamma(f ; E)$.

Moreover, an inspection of part 2) of the proof for the theorem of [5]§2 leads readily to the following extension of that theorem.

Theorem. If a curve φ is Borel-rectifiable on a set E, then $\Xi(\varphi ; E)$ coincides with $\Gamma(\varphi ; E)$.

Let us make a few remarks. The function $f(t)$, defined to be 0 or 1 according as t is rational or irrational, gives an example to the last theorem when we consider the unit interval $I=[0,1]$ for instance. Since $f(t)$ is neither continuous on I nor rectifiable (i.e. of bounded variation) on I, this case is not covered by the theorem of [5]§2. On the other hand we cannot decide at present whether Brectifiability may be replaced in our result by countable rectifiability or by a still weaker condition. But we can at least assert that Brectifiability of φ on E is not always necessary for the coincidence of $E(\varphi ; E)$ and $\Gamma(\varphi ; E)$.

In fact, put $I=[0,1]$ as above and choose a non-measurable set $A \subset I$. Then the characteristic function of the set A, for which we shall write $g(t)$, is obviously countably rectifiable (that is, VBG) on I and we find immediately that $\Xi(g ; I)=\Gamma(g ; I)=0$. We proceed to
verify that g is not B-rectifiable on I. Supposing that the contrary were true, let us express I, as we may, as the join of an infinite sequence of nonvoid Borel sets B_{1}, B_{2}, \cdots on each of which g is VB. For each $n=1,2, \cdots$ we denote by C_{n} the set of the points of B_{n} at which the subfunction $\left(g ; B_{n}\right)$, i.e. the restriction of g to the set B_{n}, is discontinuous. We observe in passing that every point of C_{n} must then be a point of accumulation for B_{n}. We shall now show that, among the sets C_{1}, C_{2}, \cdots thus constructed, there exists at least one which is infinite. Indeed, if this were false, $B_{n}-C_{n}$ would be a Borel set for each n. But evidently g is continuous on $B_{n}-C_{n}$. Consequently $A B_{n}-C_{n}$, which consists of all the points t of $B_{n}-C_{n}$ such that $g(t)=1$, must be a Borel set. Since $A B_{n}=\left(A B_{n}-C_{n}\right) \cup\left(A C_{n}\right)$ for each n and since further $A=A B_{1} \smile A B_{2} \smile \cdots$, it follows that A is a Borel set. This contradicts the definition of A.

We can thus choose a natural number p such that C_{p} is infinite. Consider in C_{p} any finite sequence t_{1}, \cdots, t_{k} of k distinct points. Denoting for $i=1,2, \cdots, k$ by W_{i} the oscillation of the function ($g ; B_{p}$) at the point t_{i}, we see at once that $W_{i}=1$. This, in combination with the evident relation $L\left(g ; B_{p}\right) \geqq W_{1}+\cdots+W_{k}$, shows that $L\left(g ; B_{p}\right) \geqq k$. Making $k \rightarrow+\infty$ we deduce $L\left(g ; B_{p}\right)=+\infty$, which is incompatible with the definition of the sequence B_{1}, B_{2}, \cdots and proves that, as we have asserted, g is not B-rectifiable on I.
2. Another definition of reduced measure-length. Given a curve φ and a set E, consider any curve ψ which coincides with φ on E. The infimum of the measure-length $L_{*}(\psi ; E)$ for all such curves ψ will be called essential measure-length of φ over E and written $L_{0}(\varphi ; E)$. We observe that $L_{0}(\varphi ; E)$, thus defined, depends solely on the behaviour of φ within the set E. Now the reduced measurelength $\Xi(\varphi ; E)$, introduced in [4]§2, can be given a second definition in terms of essential measure-length. This we shall state in the form of a theorem as follows.

Theorem. Given φ and E as above, represent E arbitrarily as the join of a sequence Δ (finite or not) of its subsets. Then $E(\varphi ; E)$ coincides with the infimum of $L_{0}(\varphi ; \Delta)$ for all Δ.

Proof. Let ψ have the same meaning as above. The lemma of [4]§2 then implies $\Xi(\varphi ; E)=\Xi(\psi ; E) \leqq L_{*}(\psi ; E)$, and it follows at once that $\Xi(\varphi ; E) \leqq L_{0}(\varphi ; E)$. Here the set E may plainly be replaced by any other set. Therefore $\Xi(\varphi ; \Delta) \leqq L_{0}(\varphi ; \Delta)$ for each sequence Δ of the assertion. On the other hand we have $\Xi(\varphi ; E) \leqq \Xi(\varphi ; \Delta)$, since the reduced measure-length is an outer Carathéodory measure. Consequently $E(\varphi ; E) \leqq L_{0}(\varphi ; \Delta)$ and so, denoting for the moment by $\Xi_{0}(\varphi ; E)$ the infimum of $L_{0}(\varphi ; \Delta)$ for all Δ, we get the inequality $\Xi(\varphi ; E) \leqq \Xi_{0}(\varphi ; E)$.

We have to derive further the converse inequality. By definition, $\Xi(\varphi ; E)$ is the infimum of $L(\varphi ; \Delta)$ for all Δ, so that it is sufficient to verify that $\Xi_{0}(\varphi ; E) \leqq L(\varphi ; \Delta)$ for each Δ. But we easily infer from the definition of Ξ_{0} that $\Xi_{0}(\varphi ; E) \leqq \Xi_{0}(\varphi ; \Delta)$. Our theorem will therefore be established if we show that $\Xi_{0}(\varphi ; X) \leqq L(\varphi ; X)$ for each given set X, where we may and do assume the right-hand side finite. In virtue of Lemma (4.1) stated on p. 221 of Saks [6], we may then suppose further that the curve φ is rectifiable (on the whole \boldsymbol{R}).

This being so, let K denote the set of all the points of discontinuity for φ. Then K must be countable since φ is rectifiable. Accordingly $\Xi_{0}(\varphi ; K X)$ vanishes by definition, and therefore, writing for short $Y=X-K$, we find immediately

$$
\Xi_{0}(\varphi ; X) \leqq \Xi_{0}(\varphi ; Y)+\Xi_{0}(\varphi ; K X)=\Xi_{0}(\varphi ; Y) \leqq L_{0}(\varphi ; Y)
$$

On the other hand $L_{0}(\varphi ; Y) \leqq L_{*}(\varphi ; Y) \leqq L(\varphi ; Y) \leqq L(\varphi ; X)$ on account of the theorem of $[4] \S 4$. Hence $\Xi_{0}(\varphi ; X) \leqq L(\varphi ; X)$, which completes the proof.
3. Unit-spheric curves. In the rest of this note the space \boldsymbol{R}^{m} will be expressly assumed to be at least 2-dimensional. Suppose that $\gamma(t)$ is a unit-spheric curve (or simply a spheric curve) in \boldsymbol{R}^{m}, i.e. let $|\gamma(t)|=1$ for every $t \in \boldsymbol{R}$. The spheric length and the spheric measure-length of γ on a set E, we define as in [1]§39 and in [2]§5 respectively. As before they will be written $\Lambda(\gamma ; E)$ and $\Lambda_{*}(\gamma ; E)$, where the reference to γ may be omitted when this causes no ambiguity. We are going to prove a theorem which will give, in terms of spheric length, a third definition to the reduced measure-length $E(\gamma ; E)$ induced by γ. Before doing so, however, we must establish the following auxiliary result.

Lemma. If a spheric curve γ is rectifiable on a set E, there exists a rectifiable spheric curve which coincides with γ at all points of E.

Remark. As we observed in [1]§40, a spheric curve is rectifiable on a set iff it is spherically rectifiable on the same set.

Proof. Supposing E nonvoid as we may, consider its closure \bar{E}. We construct on \bar{E} a spheric curve $v(t)$ as follows. For each point t_{0} of E we set simply $v\left(t_{0}\right)=\gamma\left(t_{0}\right)$. When on the other hand $t_{0} \in \bar{E}-E$, we distinguish two cases according as t_{0} is a left-hand point of accumulation for E, or not. In the former case $\gamma(t)$ tends, by hypothesis, to a definite limit as t tends to t_{0} in an increasing manner by values belonging to E, and we define $v\left(t_{0}\right)$ equal to this limit. In the latter case t_{0} must be a right-hand point of accumulation for E, and we define $v\left(t_{0}\right)$ correspondingly in an obvious way. We then see immediately that v is a spheric curve on \bar{E} and that
$\Lambda(\nu ; \bar{E})=\Lambda(\gamma ; E)<+\infty$. This allows us to assume from the first that E is a nonvoid closed set. Of course, we may further restrict to the case $E \neq \boldsymbol{R}$.

To construct a spheric curve ξ which conforms to the assertion, we put in the first place $\xi(t)=\gamma(t)$ for each $t \in E$, as required by the assertion. We then extend the definition of $\xi(t)$ to the remaining points as follows. Let I denote generically an interval contiguous to E, that is to say, the closure of a connected component of the nonvoid open set $\boldsymbol{R}-E$. We have two cases to distinguish according as I is a finite or infinite interval. In the second case, I plainly has one of the two forms $[p,+\infty)$ and $(-\infty, p]$, and noting that $p \in E$, we put simply $\xi(t)=\xi(p)$ for all points $t \neq p$ of I, so that $\xi(t)$ is constant on I.

Passing to the first case let us write $I=[a, b]$, where $a \in E$ and $b \in E$. If now $\gamma(a)+\gamma(b) \neq 0$, we put $\sigma(t)=(1-\lambda) \gamma(a)+\lambda \gamma(b)$ for each point t of the open interval (a, b), the number λ being determined by the equation $t=(1-\lambda) a+\lambda b$. Then evidently $\sigma(t) \neq 0$, and we define $\xi(t)$ to be the direction of the vector $\sigma(t)$, i.e. we set $\xi(t)=|\sigma(t)|^{-1} \sigma(t)$. If on the other hand $\gamma(a)+\gamma(b)=0$, we denote by c the middle point of I and, in order to define $\xi(t)$ on (a, b), we first determine $\xi(c)$ to be any unit-vector of the space \boldsymbol{R}^{m} different from both $\gamma(a)$ and $\gamma(b)$. Then neither $\gamma(a)+\xi(c)$ nor $\gamma(b)+\xi(c)$ vanishes, and so we can proceed in the same way as above to define $\xi(t)$ on each of the two intervals (a, c) and (c, b).

The spheric curve $\xi(t)$, thus defined over the real line and coinciding with $\gamma(t)$ on E, must be rectifiable. In fact, we can even prove the stronger relation $\Lambda(\xi ; \boldsymbol{R})=\Lambda(\gamma ; E)$. The verification is not difficult and may be left out.

Theorem. Given a spheric curve γ and a set E, let Δ denote any sequence consisting of subsets of E and covering E. Then $E(\gamma ; E)$ equals the infimum of $\Lambda(\gamma ; \Delta)$ for all Δ.

Proof. Let $\Lambda_{0}(E)$ stand for the infimum under consideration. We need only derive $\Lambda_{0}(E) \leqq E(E)$, for the converse inequality is an immediate consequence of the relation $\Lambda(X) \geqq L(X)$ which holds for every set X. We inspect the proof of the theorem of the foregoing § and find at once that the second paragraph of that proof remains valid if we replace there the letters φ and Ξ_{0} throughout by γ and Λ_{0} respectively and if, further, we use the above lemma instead of Lemma (4.1) on p. 221 of Saks [6]. It is thus enough to establish $\Lambda_{0}(X) \leqq L(X)$ for each set X, the spheric curve γ being now assumed rectifiable (over the whole \boldsymbol{R}).

With the help of the technique that was used in the proof of the above lemma in order to define the curve $\xi(t)$, we may then
repeat for γ and E an argument essentially the same as that made in the proof of the theorem of [4]§4 for the construction of the curve $\omega(u)$. This enables us to suppose further that γ is a continuous curve.

Now the theorem of $[4] \S 4$ ensures $L_{*}(X) \leqq L(X)$, while the lemma of [3]§5 gives $\Lambda_{*}(B)=L_{*}(B)$ for every Borel set B. Since $\Lambda_{*}(X)$ is the infimum of $\Lambda_{*}(B)$ for all $B \supset X$ and similarly for the measure-length, it follows that $\Lambda_{*}(X)=L_{*}(X)$. Moreover we easily prove $\Lambda_{0}(X) \leqq \Lambda_{*}(X)$, as for the lemma of [4]§2. We thus obtain $\Lambda_{0}(X) \leqq L(X)$, completing the proof.
4. Reduced measure-bend of a curve over a set. For any curve $\varphi(t)$ situated in \boldsymbol{R}^{m}, where $m \geqq 2$ as was remarked in the foregoing \S, we may define as in [1]§28 the bend of φ over a set E. We shall denote it by $\Omega(\varphi ; E)$ as before. By the reduced measure-bend of φ over E, written $r(\varphi ; E)$, we shall now understand the infimum of the sum $\Omega(\varphi ; \Delta)$, where Δ is an arbitrary sequence of subsets of E which covers E. When there is no fear of confusion, we may write $\Omega(E)$ and $r(E)$ for these two quantities. It should be noted that we have not assumed the lightness of the curve φ in the above.

Lemma. Given φ and E as above, let $\Theta=\left\langle I_{1}, I_{2}, \cdots\right\rangle$ be an arbitrary non-overlapping sequence of intervals and let us write for short $\Theta E=\left\langle I_{1} E, I_{2} E, \cdots\right\rangle$. Then $\Omega(\Theta E) \leqq \Omega(E)$.

Proof. This extension of the proposition of [1]§31 may be established in almost the same way as for that proposition.

Theorem. The reduced measure-bend $r(\varphi ; E)$, considered as a function of the set E, is an outer measure of Carathéodory which vanishes whenever E is a countable set.

Proof. Clearly we have $r(E)=0$ for countable E. We must verify further the following three conditions: (i) $r(X) \leqq r(Y)$ whenever $X \subset Y$; (ii) $r([\Delta]) \leqq r(4)$ for any sequence Δ of sets; (iii) $r(X \smile Y)$ $\geqq r(X)+\Upsilon(Y)$ for any pair of nonvoid sets X and Y with positive distance. Conditions (i) and (ii) being obvious, we may confine ourselves to (iii). By hypothesis there is a disjoint pair of open sets A and B containing X and Y respectively. Let Φ be a sequence consisting of all the connected components of A, and let Ψ be defined similarly for B. Then Φ as well as Ψ is plainly a disjoint sequence of endless intervals, no element of Φ intersecting any element of Ψ. Accordingly, by our lemma, $\Omega(N) \geqq \Omega(\Phi N)+\Omega(\Psi N)$ for each set $N \subset X \smile Y$. If, therefore, we express $X \smile Y$ arbitrarily as the join of a sequence Θ of its subsets, then $\Omega(\Theta) \geqq r(X)+r(Y)$. This implies condition (iii) and completes the proof.
5. Outer bend of point sets. We define firstly a set-function $\omega(X)$ for finite sets X in R^{m} (where $m \geqq 2$) as follows. When X
consists of at most two points, we set $\omega(X)=0$. Otherwise arrange all the points of X in any distinct sequence $x_{0}, x_{1}, \cdots, x_{n}$ and write $p_{i}=x_{i}-x_{i-1}$ for $i=1, \cdots, n$. We understand by $\omega(X)$ the minimum, for all such sequences, of the angle-sum $p_{1} \diamond p_{2}+\cdots+p_{n-1} \diamond p_{n}$. We now extend ω to infinite sets $Y \subset \boldsymbol{R}^{m}$. Let namely $\omega(Y)$ mean for each Y the supremum of $\omega(X)$ for all finite subsets X of Y. Thus defined for all sets in \boldsymbol{R}^{m} the function ω is monotone non-decreasing, as we readily see with the aid of [1]§25.

Given a set $M \subset \boldsymbol{R}^{m}$ and a positive number ε, let us consider the infimum of the sum $\omega(\Theta)$, where Θ is an arbitrary sequence of subsets of M whose join is M and whose diameters are less than ε. When $\varepsilon \rightarrow 0$, this infimum tends in a non-decreasing manner to a limit, which will be denoted by $\omega_{0}(M)$ and termed outer bend of M (cf. the definition of outer length stated on p. 54 of Saks [6]). In view of monotonity of ω we verify at once that the outer bend is an outer Carathédory measure in \boldsymbol{R}^{m} vanishing for countable sets.

Needless to say, the notion of reduced measure-bend introduced in the preceding section is an analogue, in bend theory, of the reduced measure-length. But there also exists in bend theory a notion which is analogous to the Hausdorff measure-length and which we propose to call Hausdorff measure-bend. To obtain the latter we need merely replace, in the definition of Hausdorff measure-length, the diameters of point sets in \boldsymbol{R}^{m} by their ω-values. The definition in full, as well as some basic properties, of this new quantity will be given elsewhere in the near future.

References

[1] Ka. Iseki: On certain properties of parametric curves, Jour. Math. Soc. Japan, 12, 129-173 (1960).
[2] --: On the curvature of parametric curves, Proc. Japan Acad., 37, 115-120 (1961).
[3] -: On decomposition theorems of the Vallée-Poussin type in the geometry of parametric curves, Proc. Japan Acad., 37, 169-174 (1961).
[4] -: On some measure-theoretic results in curve geometry, Proc. Japan Acad., 37, 426-431 (1961).
[5] -: Further measure-theoretic results in curve geometry, Proc. Japan Acad., 37, 515-520 (1961).
[6] S. Saks: Theory of the integral, Warszawa-Lwów (1937).

