139. Some Results in Lebesgue Geometry of Curves

By Kanesiroo ISEKI

Department of Mathematics, Ochanomizu University, Tokyo (Comm. by Z. SUETUNA, M.J.A., Dec. 12, 1961)

1. Borel-rectifiability of a curve on a set. We shall resume the study of measure-theoretic properties of parametric curves set forth in our recent notes [4] and [5]. A curve φ , situated in a Euclidean space \mathbb{R}^m of any dimension, will be said to be Borelrectifiable (or B-rectifiable, for short) on a set E of real numbers, when and only when E admits an expression as the join of a sequence of sets which, if E is nonvoid, are relatively Borel with respect to E and on each of which φ is rectifiable. In other words, E can be covered by a sequence of Borel sets (in the absolute sense) on each of whose intersections with E the curve φ is rectifiable. As may be immediately seen, this is certainly the case when φ is countably rectifiable on E and at the same time continuous on E.

We are now in a position to generalize the theorem of [5]§3 to the following form, the proof being the same as before.

THEOREM. For each function f(t) which is Borel-rectifiable on a Borel set E, the multiplicity N(f; x; E) is a measurable function of x and its integral over the real line coincides with $\Xi(f; E)$ and with $\Gamma(f; E)$.

Moreover, an inspection of part 2) of the proof for the theorem of [5] leads readily to the following extension of that theorem.

THEOREM. If a curve φ is Borel-rectifiable on a set E, then $\Xi(\varphi; E)$ coincides with $\Gamma(\varphi; E)$.

Let us make a few remarks. The function f(t), defined to be 0 or 1 according as t is rational or irrational, gives an example to the last theorem when we consider the unit interval I=[0,1] for instance. Since f(t) is neither continuous on I nor rectifiable (i.e. of bounded variation) on I, this case is not covered by the theorem of [5]§2. On the other hand we cannot decide at present whether Brectifiability may be replaced in our result by countable rectifiability or by a still weaker condition. But we can at least assert that Brectifiability of φ on E is not always necessary for the coincidence of $E(\varphi; E)$ and $\Gamma(\varphi; E)$.

In fact, put I = [0, 1] as above and choose a non-measurable set $A \subset I$. Then the characteristic function of the set A, for which we shall write g(t), is obviously countably rectifiable (that is, VBG) on I and we find immediately that $\mathcal{E}(g; I) = \Gamma(g; I) = 0$. We proceed to

verify that g is not B-rectifiable on I. Supposing that the contrary were true, let us express I, as we may, as the join of an infinite sequence of nonvoid Borel sets B_1, B_2, \cdots on each of which g is VB. For each $n=1, 2, \cdots$ we denote by C_n the set of the points of B_n at which the subfunction $(g; B_n)$, i.e. the restriction of g to the set B_n , is discontinuous. We observe in passing that every point of C_n must then be a point of accumulation for B_n . We shall now show that, among the sets C_1, C_2, \cdots thus constructed, there exists at least one which is infinite. Indeed, if this were false, B_n-C_n would be a Borel set for each n. But evidently g is continuous on B_n-C_n . Consequently AB_n-C_n , which consists of all the points t of B_n-C_n such that g(t)=1, must be a Borel set. Since $AB_n=(AB_n-C_n) \cup (AC_n)$ for each n and since further $A=AB_1 \cup AB_2 \cup \cdots$, it follows that A is a Borel set. This contradicts the definition of A.

We can thus choose a natural number p such that C_p is infinite. Consider in C_p any finite sequence t_1, \dots, t_k of k distinct points. Denoting for $i=1, 2, \dots, k$ by W_i the oscillation of the function $(g; B_p)$ at the point t_i , we see at once that $W_i=1$. This, in combination with the evident relation $L(g; B_p) \ge W_1 + \dots + W_k$, shows that $L(g; B_p) \ge k$. Making $k \to +\infty$ we deduce $L(g; B_p) = +\infty$, which is incompatible with the definition of the sequence B_1, B_2, \dots and proves that, as we have asserted, g is not B-rectifiable on I.

2. Another definition of reduced measure-length. Given a curve φ and a set E, consider any curve ψ which coincides with φ on E. The infimum of the measure-length $L_*(\psi; E)$ for all such curves ψ will be called *essential measure-length* of φ over E and written $L_0(\varphi; E)$. We observe that $L_0(\varphi; E)$, thus defined, depends solely on the behaviour of φ within the set E. Now the reduced measure-length $E(\varphi; E)$, introduced in [4]§2, can be given a second definition in terms of essential measure-length. This we shall state in the form of a theorem as follows.

THEOREM. Given φ and E as above, represent E arbitrarily as the join of a sequence Δ (finite or not) of its subsets. Then $\Xi(\varphi; E)$ coincides with the infimum of $L_0(\varphi; \Delta)$ for all Δ .

PROOF. Let ψ have the same meaning as above. The lemma of [4]§2 then implies $\Xi(\varphi; E) = \Xi(\psi; E) \leq L_*(\psi; E)$, and it follows at once that $\Xi(\varphi; E) \leq L_0(\varphi; E)$. Here the set E may plainly be replaced by any other set. Therefore $\Xi(\varphi; \varDelta) \leq L_0(\varphi; \varDelta)$ for each sequence \varDelta of the assertion. On the other hand we have $\Xi(\varphi; E) \leq \Xi(\varphi; \varDelta)$, since the reduced measure-length is an outer Carathéodory measure. Consequently $\Xi(\varphi; E) \leq L_0(\varphi; \varDelta)$ and so, denoting for the moment by $\Xi_0(\varphi; E)$ the infimum of $L_0(\varphi; \varDelta)$ for all \varDelta , we get the inequality $\Xi(\varphi; E) \leq \Xi_0(\varphi; E)$. We have to derive further the converse inequality. By definition, $E(\varphi; E)$ is the infimum of $L(\varphi; \Delta)$ for all Δ , so that it is sufficient to verify that $E_0(\varphi; E) \leq L(\varphi; \Delta)$ for each Δ . But we easily infer from the definition of E_0 that $E_0(\varphi; E) \leq E_0(\varphi; \Delta)$. Our theorem will therefore be established if we show that $E_0(\varphi; X) \leq L(\varphi; X)$ for each given set X, where we may and do assume the right-hand side finite. In virtue of Lemma (4.1) stated on p. 221 of Saks [6], we may then suppose further that the curve φ is rectifiable (on the whole R).

This being so, let K denote the set of all the points of discontinuity for φ . Then K must be countable since φ is rectifiable. Accordingly $\mathcal{Z}_0(\varphi; KX)$ vanishes by definition, and therefore, writing for short Y = X - K, we find immediately

 $\Xi_0(\varphi; X) \leq \Xi_0(\varphi; Y) + \Xi_0(\varphi; KX) = \Xi_0(\varphi; Y) \leq L_0(\varphi; Y).$

On the other hand $L_0(\varphi; Y) \leq L_*(\varphi; Y) \leq L(\varphi; X)$ on account of the theorem of [4]§4. Hence $E_0(\varphi; X) \leq L(\varphi; X)$, which completes the proof.

3. Unit-spheric curves. In the rest of this note the space \mathbb{R}^m will be expressly assumed to be at least 2-dimensional. Suppose that $\gamma(t)$ is a unit-spheric curve (or simply a spheric curve) in \mathbb{R}^m , i.e. let $|\gamma(t)|=1$ for every $t \in \mathbb{R}$. The spheric length and the spheric measure-length of γ on a set E, we define as in [1]§39 and in [2]§5 respectively. As before they will be written $\Lambda(\gamma; E)$ and $\Lambda_*(\gamma; E)$, where the reference to γ may be omitted when this causes no ambiguity. We are going to prove a theorem which will give, in terms of spheric length, a third definition to the reduced measure-length $E(\gamma; E)$ induced by γ . Before doing so, however, we must establish the following auxiliary result.

LEMMA. If a spheric curve γ is rectifiable on a set E, there exists a rectifiable spheric curve which coincides with γ at all points of E.

REMARK. As we observed in [1]§40, a spheric curve is rectifiable on a set iff it is spherically rectifiable on the same set.

PROOF. Supposing E nonvoid as we may, consider its closure \overline{E} . We construct on \overline{E} a spheric curve v(t) as follows. For each point t_0 of E we set simply $v(t_0) = \gamma(t_0)$. When on the other hand $t_0 \in \overline{E} - E$, we distinguish two cases according as t_0 is a left-hand point of accumulation for E, or not. In the former case $\gamma(t)$ tends, by hypothesis, to a definite limit as t tends to t_0 in an increasing manner by values belonging to E, and we define $v(t_0)$ equal to this limit. In the latter case t_0 must be a right-hand point of accumulation for E, and we define $v(t_0)$ correspondingly in an obvious way. We then see immediately that v is a spheric curve on \overline{E} and that

No. 10]

 $\Lambda(v; E) = \Lambda(\gamma; E) < +\infty$. This allows us to assume from the first that *E* is a nonvoid closed set. Of course, we may further restrict to the case $E \neq \mathbf{R}$.

To construct a spheric curve ξ which conforms to the assertion, we put in the first place $\xi(t) = \gamma(t)$ for each $t \in E$, as required by the assertion. We then extend the definition of $\xi(t)$ to the remaining points as follows. Let *I* denote generically an interval contiguous to *E*, that is to say, the closure of a connected component of the nonvoid open set $\mathbf{R} - E$. We have two cases to distinguish according as *I* is a finite or infinite interval. In the second case, *I* plainly has one of the two forms $[p, +\infty)$ and $(-\infty, p]$, and noting that $p \in E$, we put simply $\xi(t) = \xi(p)$ for all points $t \neq p$ of *I*, so that $\xi(t)$ is constant on *I*.

Passing to the first case let us write I = [a, b], where $a \in E$ and $b \in E$. If now $\gamma(a) + \gamma(b) \neq 0$, we put $\sigma(t) = (1 - \lambda)\gamma(a) + \lambda\gamma(b)$ for each point t of the open interval (a, b), the number λ being determined by the equation $t = (1 - \lambda)a + \lambda b$. Then evidently $\sigma(t) \neq 0$, and we define $\xi(t)$ to be the direction of the vector $\sigma(t)$, i.e. we set $\xi(t) = |\sigma(t)|^{-1}\sigma(t)$. If on the other hand $\gamma(a) + \gamma(b) = 0$, we denote by c the middle point of I and, in order to define $\xi(t)$ on (a, b), we first determine $\xi(c)$ to be any unit-vector of the space \mathbb{R}^m different from both $\gamma(a)$ and $\gamma(b)$. Then neither $\gamma(a) + \xi(c)$ nor $\gamma(b) + \xi(c)$ vanishes, and so we can proceed in the same way as above to define $\xi(t)$ on each of the two intervals (a, c) and (c, b).

The spheric curve $\xi(t)$, thus defined over the real line and coinciding with $\gamma(t)$ on E, must be rectifiable. In fact, we can even prove the stronger relation $\Lambda(\xi; \mathbf{R}) = \Lambda(\gamma; E)$. The verification is not difficult and may be left out.

THEOREM. Given a spheric curve γ and a set E, let Δ denote any sequence consisting of subsets of E and covering E. Then $\Xi(\gamma; E)$ equals the infimum of $\Lambda(\gamma; \Delta)$ for all Δ .

PROOF. Let $\Lambda_0(E)$ stand for the infimum under consideration. We need only derive $\Lambda_0(E) \leq \Xi(E)$, for the converse inequality is an immediate consequence of the relation $\Lambda(X) \geq L(X)$ which holds for every set X. We inspect the proof of the theorem of the foregoing § and find at once that the second paragraph of that proof remains valid if we replace there the letters φ and Ξ_0 throughout by γ and Λ_0 respectively and if, further, we use the above lemma instead of Lemma (4.1) on p. 221 of Saks [6]. It is thus enough to establish $\Lambda_0(X) \leq L(X)$ for each set X, the spheric curve γ being now assumed rectifiable (over the whole **R**).

With the help of the technique that was used in the proof of the above lemma in order to define the curve $\xi(t)$, we may then

repeat for γ and E an argument essentially the same as that made in the proof of the theorem of [4]§4 for the construction of the curve $\omega(u)$. This enables us to suppose further that γ is a continuous curve.

Now the theorem of [4]§4 ensures $L_*(X) \leq L(X)$, while the lemma of [3]§5 gives $\Lambda_*(B) = L_*(B)$ for every Borel set B. Since $\Lambda_*(X)$ is the infimum of $\Lambda_*(B)$ for all $B \supseteq X$ and similarly for the measure-length, it follows that $\Lambda_*(X) = L_*(X)$. Moreover we easily prove $\Lambda_0(X) \leq \Lambda_*(X)$, as for the lemma of [4]§2. We thus obtain $\Lambda_0(X) \leq L(X)$, completing the proof.

4. Reduced measure-bend of a curve over a set. For any curve $\varphi(t)$ situated in \mathbb{R}^m , where $m \ge 2$ as was remarked in the foregoing §, we may define as in [1]§28 the bend of φ over a set E. We shall denote it by $\Omega(\varphi; E)$ as before. By the reduced measure-bend of φ over E, written $\Upsilon(\varphi; E)$, we shall now understand the infimum of the sum $\Omega(\varphi; \Delta)$, where Δ is an arbitrary sequence of subsets of E which covers E. When there is no fear of confusion, we may write $\Omega(E)$ and $\Upsilon(E)$ for these two quantities. It should be noted that we have not assumed the lightness of the curve φ in the above.

LEMMA. Given φ and E as above, let $\Theta = \langle I_1, I_2, \cdots \rangle$ be an arbitrary non-overlapping sequence of intervals and let us write for short $\Theta E = \langle I_1 E, I_2 E, \cdots \rangle$. Then $\Omega(\Theta E) \leq \Omega(E)$.

PROOF. This extension of the proposition of [1]§31 may be established in almost the same way as for that proposition.

THEOREM. The reduced measure-bend $\Upsilon(\varphi; E)$, considered as a function of the set E, is an outer measure of Carathéodory which vanishes whenever E is a countable set.

PROOF. Clearly we have $\Upsilon(E)=0$ for countable E. We must verify further the following three conditions: (i) $\Upsilon(X) \leq \Upsilon(Y)$ whenever $X \subset Y$; (ii) $\Upsilon([\Delta]) \leq \Upsilon(\Delta)$ for any sequence Δ of sets; (iii) $\Upsilon(X \smile Y)$ $\geq \Upsilon(X) + \Upsilon(Y)$ for any pair of nonvoid sets X and Y with positive distance. Conditions (i) and (ii) being obvious, we may confine ourselves to (iii). By hypothesis there is a disjoint pair of open sets A and B containing X and Y respectively. Let Φ be a sequence consisting of all the connected components of A, and let Ψ be defined similarly for B. Then Φ as well as Ψ is plainly a disjoint sequence of endless intervals, no element of Φ intersecting any element of Ψ . Accordingly, by our lemma, $\Omega(N) \geq \Omega(\Phi N) + \Omega(\Psi N)$ for each set $N \subset X \smile Y$. If, therefore, we express $X \smile Y$ arbitrarily as the join of a sequence Θ of its subsets, then $\Omega(\Theta) \geq \Upsilon(X) + \Upsilon(Y)$. This implies condition (iii) and completes the proof.

5. Outer bend of point sets. We define firstly a set-function $\omega(X)$ for finite sets X in \mathbb{R}^m (where $m \ge 2$) as follows. When X

Ka. ISEKI

consists of at most two points, we set $\omega(X)=0$. Otherwise arrange all the points of X in any distinct sequence x_0, x_1, \dots, x_n and write $p_i=x_i-x_{i-1}$ for $i=1,\dots,n$. We understand by $\omega(X)$ the minimum, for all such sequences, of the angle-sum $p_1 \diamond p_2 + \dots + p_{n-1} \diamond p_n$. We now extend ω to infinite sets $Y \subset \mathbb{R}^m$. Let namely $\omega(Y)$ mean for each Y the supremum of $\omega(X)$ for all finite subsets X of Y. Thus defined for all sets in \mathbb{R}^m the function ω is monotone non-decreasing, as we readily see with the aid of [1]§25.

Given a set $M \subset \mathbb{R}^m$ and a positive number ε , let us consider the infimum of the sum $\omega(\Theta)$, where Θ is an arbitrary sequence of subsets of M whose join is M and whose diameters are less than ε . When $\varepsilon \to 0$, this infimum tends in a non-decreasing manner to a limit, which will be denoted by $\omega_0(M)$ and termed outer bend of M (cf. the definition of outer length stated on p. 54 of Saks [6]). In view of monotonity of ω we verify at once that the outer bend is an outer Carathédory measure in \mathbb{R}^m vanishing for countable sets.

Needless to say, the notion of reduced measure-bend introduced in the preceding section is an analogue, in bend theory, of the reduced measure-length. But there also exists in bend theory a notion which is analogous to the Hausdorff measure-length and which we propose to call *Hausdorff measure-bend*. To obtain the latter we need merely replace, in the definition of Hausdorff measure-length, the diameters of point sets in \mathbb{R}^m by their ω -values. The definition in full, as well as some basic properties, of this new quantity will be given elsewhere in the near future.

References

- Ka. Iseki: On certain properties of parametric curves, Jour. Math. Soc. Japan, 12, 129-173 (1960).
- [2] ——: On the curvature of parametric curves, Proc. Japan Acad., 37, 115-120 (1961).
- [3] —: On decomposition theorems of the Vallée-Poussin type in the geometry of parametric curves, Proc. Japan Acad., 37, 169-174 (1961).
- [4] —: On some measure-theoretic results in curve geometry, Proc. Japan Acad., 37, 426-431 (1961).
- [5] ——: Further measure-theoretic results in curve geometry, Proc. Japan Acad., 37, 515-520 (1961).
- [6] S. Saks: Theory of the integral, Warszawa-Lwów (1937).