23. An Asymptotic Property of a Gap Sequence

By Shigeru Takahashi
Department of Mathematics, Kanazawa University, Kanazawa
(Comm. by Z. Suetuna., M.J.A.., March 12, 1962)

1. Introduction. Let $f(t)$ be a real measurable function satisfying

$$
\begin{equation*}
f(t+1)=f(t), \quad \int_{0}^{1} f(t) d t=0 \text { and } \int_{0}^{1} f^{2}(t) d t<+\infty \tag{1.1}
\end{equation*}
$$

and $\left\{n_{k}\right\}$ be a lacunary sequence of positive integers, that is,

$$
\begin{equation*}
n_{k+1} / n_{k}>q>1 \tag{1.2}
\end{equation*}
$$

Then the sequence of functions $\left\{f\left(n_{k} t\right)\right\}$, although themselves not independent, exibits the properties of independent random variables (c.f. [3]). In [2] Professor S. Izumi proved that if $f(t)$ satisfies certain smoothness conditions, then $\left\{f\left(2^{k} t\right)\right\}$ obeys the law of the iterated logarithm. However if we put $f(t)=\cos 2 \pi t+\cos 4 \pi t$ and $n_{k}=2^{k}-1$, then, by the theorem of Erdös and Gál [1], we have,

$$
\varlimsup_{N \rightarrow \infty} \frac{1}{\sqrt{N \log \log N}} \sum_{k=1}^{N} f\left(n_{k} t\right)=2 \cos \pi t, \quad \text { a.e. in } t
$$

This shows that $\left\{f\left(n_{k} t\right)\right\}$ does not necessarily obey the law of the iterated logarithm even if $f(t)$ is a trigonometric polynomal.

In $\S \S 2-4$ we shall prove the following
Theorem. Let $f(t)$ and $\left\{n_{k}\right\}$ satisfy (1.1) and (1.2) respectively and $f(t)$ be a function of $\operatorname{Lip} \alpha, 0<\alpha \leq 1$. Then we have,

$$
\varlimsup_{N \rightarrow \infty} \frac{1}{\sqrt{N \log \log N}} \sum_{k=1}^{N} f\left(n_{k} t\right) \leq C, \quad \text { a.e. in } t
$$

where C is a positive constant depending on $f(t)$ and q in (1.1).
2. Preliminary. From now on let $f(t)$ and $\left\{n_{k}\right\}$ satisfy the conditions of the theorem. For simplicity of writing we may assume that

$$
f(t) \sim \sum_{k=1}^{\infty} c_{k} \cos 2 \pi k t .
$$

The proof is the same in the general cases as we can see by writing

$$
a_{k} \cos 2 \pi k t+b_{k} \sin 2 \pi k t=\rho_{k} \cos 2 \pi k\left(t-\xi_{k}\right) .
$$

In this paragraph let N be any fixed integer satisfying

$$
\begin{equation*}
q^{N}>3 N^{\beta} \tag{2.1}
\end{equation*}
$$

where β is a positive constant such that $\alpha \beta=6$.
Let us put, for $m=0,1, \cdots$,

$$
\begin{equation*}
g(t)=\sum_{k=1}^{N \beta} c_{k} \cos 2 \pi k t \text { and } U_{m}(t)=\sum_{l=N m+1}^{N(m+1)} g\left(n_{l} t\right) . \tag{2.2}
\end{equation*}
$$

Since $f(t) \in \operatorname{Lip} \alpha$ and $\alpha \beta=6$, we have for some constant A,

$$
\begin{equation*}
|f(t)-g(t)|<A N^{-\alpha \beta} \log N \leq A N^{-6} \log N, \quad \text { for all } t \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=n}^{\infty} c_{k}^{2} \leq A n^{-2 \alpha} \tag{2.3'}
\end{equation*}
$$

Further for simplicity of writing we may assume, by (2.3), that

$$
\begin{equation*}
|g(t)| \leq 1 \tag{2.4}
\end{equation*}
$$

Lemma 1. If λ is a positive number satisfying

$$
\begin{equation*}
2 \lambda N^{2}<1, \tag{2.5}
\end{equation*}
$$

then we have, for any positive integer k,

$$
\begin{equation*}
I(\lambda, k)=\int_{0}^{1} \exp \left\{\lambda \sum_{m=0}^{k-1} U_{2 m}(t)\right\} d t \leq e^{\lambda 2 B N k}, \tag{2.5'}
\end{equation*}
$$

$$
I^{\prime}(\lambda, k)=\int_{0}^{1} \exp \left\{\lambda \sum_{m=1}^{k} U_{2 m-1}(t)\right\} d t \leq e^{\lambda^{2} B N k},
$$

where B is a positive constant depending only on $f(t)$ and q.
Proof. If $|z|<1 / 2$, then it is easily seen that

$$
e^{z}<\left(1+z+z^{2} / 2\right) e^{a^{2} \mid z^{\mid}} .
$$

By (2.2), (2.4) and (2.5), we have

$$
\left|2 \lambda U_{2 m}(t)\right| \leq 2 \lambda N<N^{-1},
$$

and

$$
2 \sum_{m=0}^{k-1}\left|\lambda U_{2 m}(t)\right|^{3} \leq 2 \sum_{m=0}^{k-1} \lambda^{3} N^{3}<\lambda^{2} N k .
$$

From the above relations and (2.5'), we obtain

$$
\begin{equation*}
I(\lambda, k)<e^{\lambda^{2} N k} \int_{0}^{1} \prod_{m=0}^{1 k-1}\left\{1+\lambda U_{2 m}(t)+\lambda^{2} U_{2 m}^{2}(t) / 2\right\} d t \tag{2.6}
\end{equation*}
$$

On the other hand by (2.2), we have

$$
U_{m}^{2}(t)=\sum_{l=N m+1}^{N(m+1)} g^{2}\left(n_{l} t\right)+2 \sum_{l=N m+1}^{N(m+1)-1} \sum_{j=l+1}^{N(m+1)} g\left(n_{l} t\right) g\left(n_{j} t\right)
$$

and, for $N m<l<j \leq N(m+1)$,

$$
g^{2}\left(n_{l} t\right)-\frac{1}{2} \sum_{k=1}^{N^{\beta}} c_{k}^{2}
$$

and
are both sums of trigonometric functions whose frequencies lie between $n_{N m}$ and $N^{\beta}\left(n_{j}+n_{l}\right)$. Hence if we define $W_{m}(t)$ as follows:

$$
\begin{equation*}
U_{m}^{2}(t)=W_{m}(t)+\frac{N}{2} \sum_{k=1}^{N^{\beta}} c_{k}^{2}+\sum_{l=N m+1}^{N(m+1)-1} \sum_{j=l+1}^{N(m+1)} \sum_{\substack{\mid u_{j}<r-n_{l} s s^{s}<n^{\beta}}} c_{r} c_{s} \cos 2 \pi\left(n_{l} s-n_{j} r\right) t . \tag{2.7}
\end{equation*}
$$

Then $W_{m}(t)$ is the sum of trigonometric functions whose frequencies lie between $n_{N m}$ and $2 N^{\beta} n_{N(m+1)}$. If $V_{m}(t)$ denotes the last term of the right hand side of (2.7), then we have, by (1.1) and (2.3),

$$
\begin{align*}
& \leq \sum_{l=N m}^{N(m+1)} \sum_{j>l}\left\{\sum_{r=1}^{\infty} c_{r}^{2}\right\}^{1 / 2}\left\{\sum_{s>n_{j} / n_{l} l^{-1}} c_{s}^{2}\right\}^{1 / 2} \leq A \sum_{l=N m}^{N(m+1)} \sum_{j>l} q^{-\alpha|j-l|} \leq N B_{1}, \tag{2.8}
\end{align*}
$$

where B_{1} is a positive constant depending only on $f(t)$ and q. Putting $B_{2}=\frac{1}{2} \sum_{k=1}^{\infty} c_{k}^{2}+B_{1}$, it follows, from (2.7) and (2.8), that

$$
U_{m}^{2}(t) \leq N B_{2}+W_{m}(t)
$$

Hence we have, by (2.6),

$$
\begin{equation*}
I(\lambda, k) \leq e^{\lambda_{2} N k} \int_{0}^{1} \prod_{m=0}^{1-1}\left\{1+\lambda^{2} N B_{2} / 2+\lambda U_{2 m}(t)+\lambda^{2} W_{2 m}(t) / 2\right\} d t \tag{2.9}
\end{equation*}
$$

If $d_{2 m} \cos 2 \pi u_{2 m} t$ is any term of the trigonometric polynomial $\lambda U_{2 m}(t)$ $+\lambda^{2} W_{2 m}(t) / 2$, then by (2.2) and the above discussions, we have $n_{2 N m}$ $\leq u_{2 m} \leq 2 N^{\beta} n_{(2 m+1) N}$. Therefore we have, by (1.1) and (2.1),

$$
u_{2 m}-\sum_{k=0}^{m-1} u_{2 k} \geq n_{2 m N}-2 N^{\beta} \sum_{k=0}^{m-1} n_{N(2 k+1)}>n_{2 m N}\left(1-2 N^{\beta} \sum_{k=0}^{m-1} q^{-N(2 k+1)}\right)>0
$$

This implies that for any ($k_{0}, k_{1}, \cdots, k_{l}$) such that $0 \leq k_{0}<k_{1} \cdots k_{l}<k$

$$
\int_{0}^{1} \prod_{i=0}^{l} \cos 2 \pi u_{2 k i} t d t=0
$$

Hence we have

$$
\int_{0}^{1} \prod_{m=0}^{1-1}\left\{1+\lambda^{2} N B_{2} / 2+\lambda U_{2 m}(t)+\lambda^{2} W_{2 m}(t) / 2\right\} d t=\left(1+\lambda^{2} B_{2} N / 2\right)^{k} \leq e^{\lambda^{2} B_{2} N k / 2}
$$

Putting $B=1+B_{2} / 2$, we can prove (2.5) by (2.9) and the above relation. In the same way we can prove ($2.5^{\prime \prime}$).
3. Fundamental Inequality. Using Lemma 1 we prove

Lemma 2. There exist positive constants B_{0} and M_{0} depending only on $f(t)$ and q such that if M and positive λ satisfy the conditions

$$
\begin{equation*}
M>M_{0} \text { and } 4 \lambda M^{1 / 3}<1, \tag{3.1}
\end{equation*}
$$

then we have

$$
\begin{equation*}
J(\lambda, M)=\int_{0}^{1} \exp \left\{\lambda \sum_{k=1}^{M} f\left(n_{k} t\right)\right\} d t \leq 2 e^{\lambda^{2} B_{0} M} . \tag{3.2}
\end{equation*}
$$

Proof. Let N be a positive integer such that $N^{6} \leq M<(N+1)^{6}$. Then if $M>M_{1}$ for some M_{1}, N satisfies (2.1). For this N construct the functions $g(t)$ and $U_{m}(t)$ by means of (2.2). Then from (2.3) and (3.1) we obtain, if $M>M_{2}$ for some M_{2},

$$
\lambda \sum_{i=1}^{M}\left|f\left(n_{l} t\right)-g\left(n_{l} t\right)\right| \leq A \lambda M N^{-6} \log N<\frac{1}{2} \log 2
$$

Next let k be a positive integer such that $N(2 k+1) \leq M<N(2 k+3)$. Then we have, by (2.2), (2.4) and (3.1), for $M>M_{3}$

$$
\lambda\left|\sum_{l=1}^{M} g\left(n_{l} t\right)-\sum_{m=0}^{2 k} U_{m}(t)\right| \leq \lambda \sum_{l=(2 k+1) N+1}^{M}\left|g\left(n_{l} t\right)\right|<2 \lambda N<\frac{1}{2} \log 2 .
$$

Therefore if $M>M_{0}=\max \left(M_{1}, M_{2}, M_{3}\right)$, we have by the above relations and (3.1)

$$
J(\lambda, M)<2 \int_{0}^{1} \exp \left\{\lambda \sum_{m=0}^{2 k} U_{m}(t)\right\} d t
$$

and, by the Schwarz inequality,

$$
J(\lambda, M)<2\left[\int_{0}^{1} \exp \left\{2 \lambda \sum_{m=0}^{n} U_{2 m}(t)\right\} d t \int_{0}^{1} \exp \left\{2 \lambda \sum_{m=1}^{n} U_{2 m-1}(t)\right\} d t\right]^{1 / 2}
$$

Since $4 \lambda N^{2} \leq 4 \lambda M^{1 / 3}<1$, we can apply Lemma 1 to the above terms and obtain

$$
J(\lambda, M) \leq 2 e^{2 \lambda^{2} B N(2 k+1)} \leq 2 e^{2 \lambda 2 B M} .
$$

If we put $2 B=B_{0}$, we can prove the lemma.
For any integers $N \geq 0$ we consider the sequence $\left\{n_{N+k}\right\}, k$ $=1,2, \cdots$, which satisfies (1.1), instead of $\left\{n_{k}\right\}, k=1,2, \cdots$, then for the same B_{0} and M_{0} as in Lemma 2 the following lemma holds.

Lemma 3. Let $N \geq 0$ be any integer and positive λ and M satisfy

$$
\begin{equation*}
M>M_{0} \text { and } 4 \lambda M^{1 / 3}<1 \tag{3.3}
\end{equation*}
$$

then we have

$$
\int_{0}^{1} \exp \left\{\lambda_{l=N+1}^{M+N} \sum_{l}^{N} f\left(n_{l} t\right)\right\} d t \leq 2 e^{\lambda^{2} B_{0} \mu} .
$$

In the following let us put, for $M>0$ and $N \geq 0$,

$$
\begin{equation*}
F(N, M, t)=\sum_{k=N+1}^{N+M} f\left(n_{k} t\right) \tag{3.4}
\end{equation*}
$$

Lemma 4. Let M and positive $\psi(M)$ satisfy the conditions

$$
\begin{equation*}
M>M_{0} \text { and } 16 \psi(M)<B_{0} M^{1 / 3} \tag{3.5}
\end{equation*}
$$

then we have

$$
\left|\left\{t ; 0 \leq t \leq 1, F(N, M ; t)>2 \sqrt{B_{0} M \psi(M)}\right\}\right| \leq 2 e^{-\psi(M)}
$$

Proof. If we put $\lambda=\sqrt{\psi(M) / B_{0} \bar{M}}$, then (3.5) implies (3.3). Hence we have

$$
\left|\left\{t ; 0 \leq t \leq 1, F^{\prime}(N, M ; t)>2 \sqrt{B_{0} M \psi(M)}\right\}\right| \leq 2 e^{\lambda B_{0} M-2 \lambda \sqrt{B_{0} M \psi(M)}} \leq 2 e^{-\psi(M)} .
$$

4. Proof of the theorem. To prove the theorem it is sufficient to show that

$$
\begin{equation*}
\varlimsup_{m \rightarrow \infty} \frac{1}{\sqrt{2^{m} B_{0} \log m}} \sum_{k=1}^{2^{m}} f\left(n_{k} t\right) \leq 3, \quad \text { a.e. in } t \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\varlimsup_{m \rightarrow \infty} \max _{2^{m \leq n<2^{m+1}}} \frac{1}{\sqrt{2^{m} B_{0} \log m}} \sum_{k=2^{m}+1}^{n} f\left(n_{k} t\right) \leq 3, \quad \text { a.e. in } t . \tag{4.2}
\end{equation*}
$$

By Lemma 4 and the boundedness of $f(t)$ we can prove (4.1) and (4.2) in the same way as that of Erdös and Gál (c.f. §4 of the second paper of [I]).

References

[1] P. Erdös and I. S. Gál: On the law of the iterated logarithm. I and II, Nederl. Akad. Wetensch. Proc. Ser. A., 58, 65-76 and 77-84 (1955).
[2] S. Izumi: Notes on Fourier analysis (XLIV); On the law of the iterated logarithm of some sequence of functions, Jour. of Math., 1, 1-22 (1952).
[3] M. Kac: Probability method in analysis and number theory, Bull. Amer. Math. Soc., 55, 641-665 (1949).

