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112. On an Isomorphism of Galois Cohomology Groups
H™G, Oy) of Integers in an Algebraic Number Field

By Hideo Yoxkor
(Comm. by K. SHODA, Oct. 12, 1962)

Introduction. In my paper [1]” we proved the following theo-
rem:

Let K be a normal extension over the rational number field Q,
and k be a subfield of K such that K/k is cyclic of prime degree p
and that k/Q is normal of degree n. Then, for every dimension m
the Galois cohomology group H™(G, O) (G=G(K/k)) of Ox with respect
to K/k is isomorphic to the ms/e-ple direct sum of cyclic group of
order p:

—— msfe —
H™(G, Ox)={p, p,* * -, D}.

There we proved this Theorem by showing that the 1-dimen-
sional Galois cohomology group HY(G, Ox) of O, with respect to K/k
is isomorphic to the 0-dimensional Galois cohomology group HYG,
Og) of Ox with respect to K/k:

HY(G, Ox) = HYG, Og).

In the present paper, we shall give another proof of this Theo-
rem by showing that the 0-dimensional Galois cohomology group
H(G, Og) of O with respect to K/k is isomorphic to the —1-dimen-
sional Galois cohomology group H (G, Og) of Oy with respect to
K/k:

HO(G’ OK) = H—I(G’ OK)’

Theorem. Let K be a normal extension over the rational number
field Q, and k be a subfield of K such that K/k is cyclic of prime
degree p and that k/Q is normal of degree n. Denote by G the Galois
group of Klk, by Ox and O, the rings of all integers in K and k
respectively. Further, let v be the common ramification number with
respect to K/k of all the prime divisors P, of p in K,* and e be the
common ramification order with respect to k/Q of all the prime

divisors p; of pim k. Put s:v—l:%:lgo, where [x] means Gaussian

symbol.

Then the—1-dimensional Galois cohomology group H (G, Of) of
Oy with respect to K[k is tsomorphic to the ms/e-ple direct sum of
cyclic group of order p:

1) Cf. H. Yokoi [1], Theorem 3.
2) Here we understand the ramification number » in the same way as we under-
stood in [1]. Cf. H. Yokoi [1], [Remark].
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e —~
H—I(Gr OK)E{p’ Dy -y p}'

Proof. Let O% be the submodule of O, which consists of all
elements A in Og such that Sz, A=0, ¢ be a generator of Galois
group G of K/k, and Z[G] be the group ring of G over the rational
integers. Set S=1+4o0+4-:-+0?"*'€Z[G]. Then we may regard O%
as a Z[G]/(S)-module, where (S) is the principal ideal of Z[G]
generated by S. Sinece Z[G]/(S) is a Dedekindian ring, we have by
Chevalley’s lemma® direct decompositions

O%=U,DUA,PD -+ DY,
() (6—1)0;=B,®B,D--- BB,
of Z[G]/(S)-modules O% and (¢—1)Ox with A, 2B, (1=1,2,---, n).
Since (¢—1)0% is also a Z[G]/(S)-submodule of (¢—1)Oy, correspond-
ing to the decompositions (#) we have the direct decomposition

(6—1)0%=(6—1)U,D--- D(c—1)U,

of (¢6—1)0% such that U,2B,2(¢—1)%, (1=1,2,---,n). Further,
since the index of (¢—1)¥; in U, is the prime number p, each factor
B, is equal to either U, or (¢—1)%,.

On the other hand, if we put t=mus/e, we may take the follow-

ing basis of the ring Og:*

0K= [ﬁlr' "y ‘Bn(p—ny D1,0 00y @y &gyttt En-t:l

with &=(;.,+a)/p (1=1,2,--+, n—t), where [0, (j=1,2,---,n)] is
a suitable basis of Ok, and a;, 8, are integers in K such that Sx,a;
=0, SgiBn=0, (i=1,2,.-.-,n—t, m=1,2,.---, n(p—1)). Then both
(6—1)Of and (¢—1)O% are submodules of Of generated by (¢—1)8,,
) (a'—l)ﬁn(p—ln (0—1)519° ] (0—1){:7;—& and (0_1)/31" * (g—l)tgn(p—l)
respectively. Therefore, (6—1)¢;,=(s6—1)ay/p (1=1,2,---, n—t) gen-
erate the factor module F=(6—1)0;/(¢—1)0% and moreover they
form a basis of F. For, if we assume that Y x,(s0—1)¢,=(s—1)8
for some B in O% and for rational integers xz, (¢=1,2,--., n—t),
then we have (¢6—1)(J%,a,/p—p)=0 and hence pf=2x,a;, But since
a;=p&—aw,;, we have 3 x,0,=p(f—23 2,¢,), which implies ,=0 mod p
for every i=1,2,.--., n—t.

This fact means, as we see by permuting the summands in (#),
that B,=(¢—1)%,, B,=(c—1)U,,---,B,=(6—1)A, and B,,, =%, -,
B,=U,. Consequently, we have the following direct decompositions:

F=(6—1)0k/(c—1)0%=,,,/(c—1)U,, D - - DU, /(6—1)U,,
%/(0—1)0x = Uy /(6—1)U, D - - DU, /(o — 1)1,
This implies our isomorphism

— ¢ =~
H_I(G’ OK) = OI*;'/(O'—I)OK = {p’ Dy ey p}- Q-E-D-
From this Theorem and Proposition 6 in [1], we can prove the

3) Cf. C. Chevalley [8].
4) Cf. H. Yokoi [2], Theorem 2.
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isomorphism between the —1-dimensional Galois cohomology group
H (G, Og) of Ox with respect to K/k and the 0-dimensional Galois
cohomology group HYG, Ox) of Oy with respect to K/k in the same
way as in [1] we proved the isomorphism between the 1-dimensional
Galois cohomology group HY(G,Og) of Oy with respect to K/k and
the 0-dimensional Galois cohomology group H%G,Ox) of Oy with
respect to K/k. Consequently, we obtain the isomorphism of all
dimensional Galois cohomology H™(G, Ox) of O with respect to K/k
again similarly.
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