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112. On an Isomorphism of Galois Cohomology Groups
H(G, 0) of Integers in an Algebraic Number Field

By Hideo YOKO
(Comm. by K. SHODA, 0et. 12, 1962)

Introduction. In my paper [1]" we proved the following theo-
rem:

Let K be a normal extension over he rational number field Q,
and k be a subfield of K such $ha$ K/k is cyclic of prime degree p
and tha k/Q is normal of degree n. Then, for every dimension m
he Galois cohomology group H"(G, 0) (G--G(K/k)) of O wih respect
o K/k is isomorphic to the ns/e-ple direct sum of cyclic group of
oder p:

n/e

H(G, O)-{p, p,.. ., p}.
There we proved this Theorem by showing that the 1-dimen-

sional Galois cohomology group H(G, 0) of O with respect to K/k
is isomorphic to the 0-dimensional Galois cohomology group H(G,
O) of O with respect to K/k:

H(G, 0)- H(G, 0).
In the present paper, we shall give another proof of this Theo-

rem by showing that the 0-dimensional Galois cohomology group
H(G, O) of O with respect to K/k is isomorphic to the--1-dimen-
sional Galois cohomology group H-(G, 0) of O with respect to
K/k"

H(G, 0) - H-(G, 0).
Theorem. Let K be a normal extension over the rational number

field Q, and k be a subfield of K such tha$ K/k is cyclic of prime
degree p and tha k/Q is normal of degree n. Denote by G the Galois
group of K/k, by O and O the rings of all integers in K and k
respectively. Further, let v be the common ramification number with
respec to K/k of all the prime divisors of p in K, and e be he
common ramification order with respect o k/Q of all the prime

divisors p, of pin k. Put s--v--E-.J>=O where x means Gaussian

symbol.
Then the--l-dimensional Galois cohomology group H-(G, 0) of

O with respect o K/k is isomorphic to the ns/e-ple direc sum of
cyclic group of order p:

1) Cf. H. Yokoi [1], Theorem 3.
2) Here we understand the ramification number v in the same way as we under-

stood in [1]. Cf. H. Yokoi [1], [Remark].
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H-(G, 0)-{p, p,. ., p}.
Proof. Let O be the submodule of O which consists of all

elements A in O such that Szc/A=O, be a generator of Galo/s
group G of K/k, and ZEG be the group ring of G over the rational
integers. Set S--I+a+...+a.-eZEG. Then we may regard
as a ZEG]/(S)-module, where (S) is the principal ideal of ZEG
generated by S. Since ZEG/(S) is a Dedekindian ring, we have by
Chevalley’s lemma) direct decompositions

of Z[G]l(S)-modules O and (--1)0 with I, (i-1,2,..., n).
Since (a-1)O is also a ZG/(S)-submodule of (a--1)O, correspond-
ing to the decompositions ($) we have the direct decomposition

(o---1)0.--(a--1)?1., @...
of (--1)0 such that (--1) (i--1, 2,..., n). Further,
since the index of (a--1)l in is the prime number p, each factor

is equal to either or (a--1)2.
On the other hand, if we put t-ns/e, we may take the follow-

ing basis of the ring 0:
o- E,. .,/-., ,..., , ,..., _]

with $,=(w,/,+a,)/p (i--1,2,..., n--t), where w (j=l, 2,..., n)] is
a suitable basis of O, and a,, are integers in K such that S/,a,
=0, S/-O, (i-l, 2,...,n--t, m-l, 2,...,n(p--1)). Then both
(a--1)Or and (a--1)O are submodules of O generated by (a--1)fl,
.., (a --1),,_ ,,, (0--1)1,... (a-1)$,_t and (a--1)fl,,...,

respectively. Therefore, (a--1)-(--l)Jp (i=l, 2,...,n--t) gen-
erate the factor module F=(o--1)O/(o--1)O and moreover they
form a basis of F. For, if we assume that Z(a--1)$--(a--1)
for some in O and for rational integers x (i=l, 2,...,n--),
then we have (a--1)(ZaJp--fl)=O and hence p--xa. But since
a--p$--o, we have mw-p(fl--X$0, which implies m0 mod
for every i- 1, 2,. ., n- t.

This fact means, as we see by permuting the summands in ($),
that ,--(a--1), .--(a--1)J.,...,--(a--1) and +--,+,...,
-I. Consequently, we have the following direct decompositions"

F= (a-- 1)Ol(a-- 1)0 ,+l(a--1)t @""@I,l(a-- 1),,
O?d(-1)0 . 9.I/(o- 1)r @... @t/(o-- 1)1t.

This implies our isomorphism

H-(G, 0) - O?c/(a-- 1)0 - {p, p,. ., p}. Q.E.D.
From this Theorem and Proposition 6 in [1], we can prove the

3) Cf. C. Chevalley [3].
4) Cf. H. Yokoi [2], Theorem 2.
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isomorphism between the --1-dimensional Galois cohomology group
H-(G,O) of O with respect to K/k and the 0-dimensional Galois
cohomology group H(G, 0) of O with respect to K/k in the same
way as in [1 we proved the isomorphism between the l-dimensional
Galois cohomology group H(G, 0:) of Oc with respect to K/k and
the 0-dimensional Galois cohomology group H(G,O) of O with
respect to K/k. Consequently, we obtain the isomorphism of all
dimensional Galois cohomology H(G, 0) of O with respect to K/k
again similarly.
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