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We have considered 1 already the equation of the following
type;
( 1 z/u u,+g(u)
and obtained an apriori estimate for the solution of the Cauchy
problem for 3 space dimension under the condition:

i)
(2)

ii) g’(u)]<=c[u] ([u]_>_k) c is a constant.
In this paper, we shall obtain the analogous results for the space
dimension n higher than 3 assuming that the solution belongs to the

space D,+:. Our conditions for these cases are the following;

i) G(u) g(u) >= L (L> O)

3 ii) Ig’(u) l<__ el u -z- 2< n<= 6 (I u >-_ k)
iii) Ig"(u) l<=M, [g’"(u) l<=

At first we introduce new unknown functions and we obtain a sys-
tem of equations (4).

u v (p_ 3u )

(c- l, 2,. .,
Our initial conditions for the Cauchy problem ior u, v, p are u(x, 0),

v(x, 0), p(x, 0)eC-]+, C0[]+, C0[-]+ respectively and we suppose
g(u)eC; here we denote CX the function space of the functions with
continuous derivatives of n th order and with compact supports.

If we introduce an energy Eo(t) of the solution u by the follow-
ing integral form, we can easily prove its conservation, that is to
say

1 pldx2
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dx means n dimensional space element.

fl 3u v 3V
P PildxdEo g(u)--+dt 3t =1 "--A

,= ,= --g(u)v dx

=0
then, we have
(6) E0(t)-const. (the conservation of energy).
Next step is the estimation of energy of first order defined by

av andpq means OP (thatiswhere v means
3x 3x 3x3x

In order to obtain the estimation of this energy, differentiating the
system (4) we have

3p Ov i 1,. ., n
3t 3x j= 1, n

and we obtain,

(m is the set of for whieh
Applying the Sobolev’s lemma for u and Ps, we obtain

f g’(u)pjv Idx<= CE/+-E <CE/+-E=

and obviously,

f lg’(u)psvstdx gEo+E g-Maxg’(u)l.,,
We have

dE,dt (CE-+ g )E+Eog
where C, Eo, g are constants,

g E

E0 e --9 ) E(t)e+E(O)+g
Third step is to obtain the estimation of the energy of 2nd order;

(IO) E(t)= +
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We differentiate the system (8) except the first equation.=:.-’(u)-"()
()

at
Op Ov (i, , k= 1, 2,..., n)
3t 3x

and we have
dE "’ f "fg (u)uuvdx.
dt ,

i) At first, we estimate the first term (u=p).

f g’(u)pv dx

u Idx Jvidx
cE/<"-)E(t)

N MEI/’E(t) for

_
n--2

dE(t) ME(t)/E(t) +E/(_:)E(t)
dt

ME(t)/+E/(’-:)-F(t) (bounded function)

(2) E(t) gE(O)eo
Fourth step is the estimation of the energy of 3rd order;

Differentiating the system (11),
v. Ep.-g’ u)p-g"(u)p.p

a"(u)-
3p (i,j,k,e=l, 2,..., n)(14)

dE(t)dt ---,,=[--f dx--lfg"(u)p,pv,dx

--f "’u v dx].g )PP,P
The question is to evaluate the third integrals,

Mflp,ppv,ldx

_MF
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=< M,EE’:E <M,E(t)E(t) (4 < n
_

6).
Then we conclude

dE F(t)E(t) (F(t) is one bounded function)
dt

(15) E(t) CE(O).
Finally, we obtain the apriori bound for u(x,t) by the Sobolev’s
lemma.

For n5, ]u(x, t)][ is bounded means that u(x, t) is bounded.
n-6, [u(x, t) is bounded means that u(x, t) is bounded.
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