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143. Some Characterizations of m-paracompact Spaces. II

By Tadashi IsHII
Utsunomiya College of Technology
(Comm. by K. KuNucGl, M.J.A., Nov. 12, 1962)

In this paper we study some characterizations of m-paracompact
and normal spaces in the form of the selection theorems.” Let X
and Y be topological spaces. 2Y will denote the family of non-empty
subsets of Y. A function from a subset of X to 2¥ is called a
carrier. If ¢: X—2Y, then a selection for ¢ is a continuous function
f: X—>Y such that f(x)ep(x) for every xeX. A carrier ¢: X—>2% is
lower semi-continuous if, whenever VCY is open in Y, {xeX]|o(x)
NV=x¢} is open in X, where ¢ denotes the null set. For a Banach
space or a complete metric space Y, we shall consider the following
families of sets.

A(Y)={Se2¥|S is closed},
K(Y)={Se2¥|S is convex]},
F(Y)={SeK(Y)|S is closed},
C(Y)={SeF(Y)|S is compact or S=Y}.

The following theorem seems to be interesting for us in the
point of view that Michael’s results [8, Theorems 8.1” and 8.2"7,
which were separately stated and proved for paracompact spaces
and countably paracompact spaces, are unified.

Theorem 1. The following properties of a T,-space are equi-
valent.

(a) X s m-paracompact and normal.

(b) If Y 4s a Banach space which has an open base of power
=m, then every lower semi-continuous carrier ¢: X—F(Y) admits a
selection.

To prove this theorem, the following lemmas and Theorem 2 in
the previous paper [2] are useful.

Lemma 1. If X is m-paracompact and mormal, Y a normed
linear space with an open base of power =m, ¢: X—>K(Y) a lower
semi-continuous carrier, and if V is a convex mneighborhood of the
origin of Y, then there exists a continuous function f:X—>Y such
that f(x)ep(x)+V for every x in X.

Proof. Since {y—V},cr is an open covering of Y and Y has an
open base with power <m, there exists a locally finite open refine-
ment {W,|2e4} of {y—V},cr with [4]|=m. Let U,={zcX|p(x)NW,

1) Cf. E. Michael [8].
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% ¢@}. Then, by the definition of a lower semi-continuous carrier, U,
is open in X, and clearly U={U,|ic4} is an open covering of X.
Since X is m-paracompact and normal, there exists a locally finite
partition of unity P={p.|ac@} on X subordinated to U, with |Q2| <m.
Now for each acf, pick a A(a)ed and a y.€Y such that p, vanishes
outside U;nell and W,,,Cy.—V. We can now set

S(#) =] pe(®)Yer
Then it is obvious that f(x) is a continuous function of X into Y.
Since, for any z,¢ X, {ac Q]| p.(x,) >0} is a finite subset of 2, we denote
it by {ay, as,- -+, @,}. Then, since x,¢{x|p. (2)>0}CU,.y, We obtain
P(2) N Wiap>xp. Hence it follows from W,.,C¥;.,—V that o(w,)
NYrap—V)x¢. Thus we have

yl(ai)c¢(x0)+ Vv (7’:1’ 2, n))
which means that
S(@0) =3 De(X0)Yu € p(20)+ V.

This completes the proof of this lemma.

Lemma 2. ({3, Theorem 3.1"]) The following properties of a
T,-space are equivalent.

(a) X is mormal.

(b) If Y is a separable Banach space, then every lower semi-
continuous carrier ¢:X—>C(Y) admits a selection.

Proof of Theorem 1. (a)—>(b). This can be proved by the same
way as in the proof of [3, Theorem 3.2”] besides using Lemma 1.
(b)~>(a). From the same arguments as in the proof of [3, Theorem
8.2"77, if follows that every open covering U={U,|1e¢4} of X with
| 4] <m admits a partition of unity (not necessarily locally finite)
subordinated to it. Since it follows from Lemma 2 that X is normal,
and X is m-paracompact by virtue of Theorem 2 in the previous
paper [2], we complete the proof.

Corollary 1. ([8, Theorem 3.1"]) The following properties of
a T,-space are equivalent.

(a) X is mormal and countably paracompact.

(b) If Y is a separable Banach space, then every lower semi-
continuous carrier ¢:X—>F(Y) admits a selection.

Corollary 2. ([8, Theorem 3.2”7]) The following properties of
a Ti-space are equivalent.

(a) X s paracompact.

(b) If Y is a Banach space, then every lower semi-continuous
carrier ¢: X—>F(Y) admits a selection.

In the sequel we characterize a 0-dimensional m-paracompact and
normal space by the property of lower semi-continuous carriers.

Theorem 2. The following properties of a T;-space are equi-
valent.
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(a) X 1is 0-dimensional m-paracompact and normal.

(b) If Y s a Banach space which has an open base of power
<m, then every lower semi-continuous carrier ¢:X—>A(Y) admits a
selection.

As a first step, we shall state the following lemmas.

Lemma 3. ([5, Theorem 2.17) If X is a normal space of dimen-
ston =m, then any locally finite open covering of X has an open
refinement of order =n-+1.

Lemma 4. If X is 0-dimensional m-paracompact and normal,
Y a paracompact uniform space with an open base of power =m,
0: X—>2Y a lower semi-continuous carrier, and if V is a symmetric
uniform mneighborhood of Y, then there exists a continuous function
f:X—>Y such that f(x)eV(e(x)) for every z in X.

Proof. Since {V(y)|ycY} is an open covering of Y and Y has
an open base with power <m, there exists a locally fiinite open
refinement {W,|2e4} of {V(y)|yeY}, with [4]|<m. Let U,={zeX]|
(@) W,x¢}. Clearly U, is open in X and U={U,|2e4} is an open
covering of X. Since X is 0-dimensional m-paracompact and normal,
it follows from Lemma 3 that there exists an open refinement
B={V,.|ac} of U such that V.NV,=¢ as axp. Now, for each
acQ, pick a A(a)ed and a y, in Y such that V.CU,., and W,,,C
V(y.). Since, for any « in X, there exists only one element a(x)eQ
such that xeV,,. We now set f(®)=y, as xcV,. Then it is obvious
that f(x) is a continuous function of X into Y. Since xe¢V, implies
26Uy, We obtain ¢(®) Wy 9. Hence ¢o(x)() V(y.)>¢. This shows
that y.€ V(p(z)). Thus f(x) satisfies all our requirements. This com-
pletes the proof of this lemma.

Proof of Theorem 2. Since we can prove that (a)—(b) by the
same way as in the proof of [3, Theorem 3.2”] without any altera-
tions besides using Lemma 4, we shall show only that (b)—>(a).

Let U={U,|1¢4} be an open covering of X with |4|=<m, and
let us consider 4 as a metric space such that each pair of distinct
points of A have distance 1. Then a metric space /A can be imbedded
as a neighborhood retract in a suitable (generalized) Hilbert space Y
with an open base of power =m.” Now, for any zeX, let ¢o(x)
={1|xeU,;}. Then ¢: X—A(Y) is lower semi-continuous. In fact, for
any subset 4, of 4, {xeX|o(x)NdyxxP}=Uc4,U;, which shows lower
semi-continuity of ¢. Hence, by (b), we can select a continuous func-
tion f: X—Y such that f(x)ep(x) for every xeX. Since the inverse
images f (1) form an open covering of X of order 1 which refines
U, X becomes a 0-dimensional m-paracompact space. Furthermore it

2) Cf. Dowker [1, Remark (p. 318)].
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follows from Lemma 2 that X is normal. This completes the proof.

Corollary 1. The following properties of a T,-space are equi-
valent.

(a) X 1is 0-dimensional countably paracompact and normal.

(b) If Y is a separable Banach space, then every lower semi-
continuous carrier ¢: X—> A(Y) admits a selection.

Corollary 2. The following properties of a T,-space are equi-
valent.

(a) X is 0-dimensional paracompact and normal.

(b) If Y is a Banach space, then every lower semi-continuous
carrier ¢:X—>A(Y) admits a selection.

Remark. As is easily seen, we can replace “a Banach space”
in Theorem 2 and Corollaries 1,2 with “a complete metric space”.

Corollary 3. If Y is a complete metric space with an open base
of power <m, X a 0-dimensional m-paracompact and normal space,
and if the map w:Y—>X is continuous, open and onto, then there
exists a continuous f:X—>Y such that f(x)eu '(x) for every xeX.

Proof. Define ¢: X—A(Y) by o(x)=u"'(x). By Example 1.1*
of [8], ¢ is lower semi-continuous. Hence, by Theorem 2, there
exists a selection f for ¢, and clearly f satisfies our requirements.

[4, Corollary 1.4] is an immediate consequence of this corollary.
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