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Faeulty of Edueation, Kumamoto University

(Comm. by K. KUNUG, M.b.A., Nov. 12, 1962)

In this paper we shall turn to the problem of finding the extended
Fourier-series expansion corresponding to each of the functions S(),
(), (), and R() defined in the statement of Theorem 1 cf. Vol.

38, No. 6 (1962), pp. 263-268.
Theorem 6. Let {,}, S(), and R() be the same notations as

those in Theorem 1 respectively. Then, for every p with sup I1<
< oo and every with 0__<< oo,

ao 1 (a--ib)(e) (t?: variable),( 7 ) R(e’) - +-=1where

Ifa---- S(pe") cos nt dt

(n--0,1,2,3, ..)(8) 1 /’
b,---J S(peu) sin nt dt

7C

and the series on the right-hand side converges absolutely and uni-
formly.

Proof. It follows from Theorem 1 that

where 0! and R(0) denote 1 and R(0) respectively, so that
ao + -,__x(a-- ib) (e’O (cpe’) (0 < < co)- =o n!

R(cpe).
In addition, the absolute and uniform convergence of the series

on the right-hand side of (7) is a direct consequence of the hy-
pothesis that R() is regular on the domain {:

Theorem 7. Let [2.}, S(), and R(2) be the same notations as
before. Then, for every p with sup 12, < P< oo and every with

0<:<1,



642 S. INOU. [Vol. 38,

a0 1 (e/" 1

where a and b are given by (8) and the two series on the right-
hand side both converge absolutely and uniformly.

Proof. As already demonstrated in my preceding paper, the
equality

pe’e 1 S(pe")
1

(10) S/--R +Z(Pe’e)

holds for every p with sup]a,<p< and every with 0<<1.

Moreover, in the same manner as that for the real Poisson integral,
we can find that the complex Poisson integral on the right-hand side
of (10) is expansible in the form

a + x"(a con n+ b, sin

where a, and b= are given by (8). By applying this result and
Theorem 6 to (10) we have

S +(a cos ne+b sin nO)+ (a--ib,)

=1

where the three series on the right-hand side converge absolutely
and uniformly on account of the fact that the sets {a] and {b} both

1 (a_ib)_R()(O)p/n for n=0, 1, 2, 3,...;are bounded and that

and by direct calculation it is easily found that the just established

expansion of S is rewritten in the form of the right-hand side

of (9). oreover it is dear that the last series on the right of (9)
eonverges absolutely and uniformly for any with 0<<1.

With these results ghe roof of the theorem is complete.
heorem 8. Let {i} and S(1) be the same notations as before.

If all the accumulation oins of {2} form a countable set, then the
first rineial art (2) of S(2) is expansible in the form

() _1 ()"
where and b are given by (8) and the series on the right-hand
side converges absolutely and uniformly.

Proof. By the hypothesis on the set {2,} we have

/ a=l

I x1 S(pe)
1 +--2 cos (-- t)

dr--R(pe’)
2 "o
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as already shown in (2) of my preceding paper. Consequently it is
found immediately from the course of the proof of Theorem 7 that- + (a, cos n0+b sin nO) (a--ib)(d

-= 2 2 =
1 (+ib)

where the series on the right of the final relation eonverges absolutely
and uniformly.

Nemark. If all the accumulation oints of {2} form an uncounta-
ble set, the seeond rineial art g(i) is expansible in the form

(0<< 1, sup] 2 <p< ),
as will be seen immediately from (1) in the preceding paper.

Theorem 9. Let {,} and S() be the same notations as those in
Theorem 1 respectively. If there are a positive number a with sup

< a< and a countably infinite set of points rce with sup r

such that

dt-O 2, 3 ...),
geit Je3

then the relations
1 [S(oe) cos t- [S(pe) sin

1 [S(oe) sin t dr--- S(oe) cos t

hold for every ositive integer and every p with

and S(2) is expansible in he form

s

where a=, n=0, 1, 2,..., are given by (8).
Proof. As already proved at the beginning of the proof of Corol-

lary 1 in my preceding paper, it is found by hypothesis that the
ordinary part R() of S() is a constant which will be denoted by C
and hence that

(11) " + ( eos t+b sin

where nd b are given by (8). oreover, on the one hand,
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and on the other hand,

C=R(0)
1

1 fS(pe,t)dt2

ao
2’

C--R(z) z-rd, r p, --1 S S(1)
2i =._d2
1

pe" dt
2 reO

_1
2rr 1--e<-

By alying (11) and the just indicated relation a---C to the
2

and hence , (a-- ibm) (e)--- O.

If, for simplicity, we now make use of abbreviations

A-- --1 YtS(pe")J cos nt dt,

B f*[S(pet)] COS nt dt,

C-- f[S(pe)] sin nt dt,

D-- f[S(pe") sin

the just established identity is rewritten, as follows:

{(A+D)+i(B--C)} (cos O+i sin 0)0.

final relation, we obtain
1 {C+](a cos nt+b sin nt)}C
2 -=

{1 + (e)" (cos nt--i sin nt)}dt
m=l

=c+ (a-ibm) (.o)
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Accordingly the two identities

-,n{(A--D) cos n--(B--C) sin nt}0,

,x{(A+D) sin nO+(B--C) cos nO}O
=1

hold for every x with 0<x<l, so that
(A,+D,) cos nO(B,--C,) sin nO,
(A,+ D,) sin nO--(B,--C,) cos nO

for n=l, 2, 3,.... From the final two systems of identities, it follows
at once that A,=--D, and B,=C, for n=1,2,3,..., and hence that
a,--ib, for n--l, 2, 3,....

Furthermore we can easily find that an application of the system
of relations a,=ib,, n=l, 2, 3,..., to (11) yields the desired expansion

(peof S..
The proof of the theorem has thus been finished.
Remark. It can be verified without difficulty that, if there are

a positive number a with sup [<a< and a countably infinite set

of points z with supz<a such that the integrals-- S(2) d2 (j-1 2,3,...)
=(_z).+l

assume the same value, not zero, then results analogous to those of
Theorem 9 are established for the z-th derivative S("(2) on the
domain {2:sup[2<]2[<}. The same is true of the case where

there exists a positive number a with sup l2<a< such that

4x d20,
"+

d2--0 (p--2,3, 4,. .).
1= 1=

In either case it turns out, in fact, that R() is a polynomial in
2 of precisely the degree Z, the ordinary part of S(")(2) is given by
R(")(2), and the set of non-regular points of S(")(2) consists of the set
[} and its accumulation points.


