On Theorems of Korovkin

By Hisashi Choda and Marie Echigo Department of Mathematics, Osaka Gakugei Daigaku (Comm. by Kinjirô Kunugi, M.J.A., Feb. 12, 1963)

1. In a recently published book [3], P. P. Korovkin established the following interesting theorems which are fundamental in his theory of approximation:

THEOREM 1. If the two conditions

(1)
$$\sigma_n(1) \to 1$$
, as $n \to \infty$,

where $a \leq c \leq b$ and

(3)
$$g(x)=(x-c)^2$$
,

are satisfied for the sequence of positive linear functionals σ_n on the Banach space C[a, b] of all continuous functions on [a, b], then

$$\lim_{n \to \infty} \sigma_n(f) = f(c)$$

for any $f \in C[a, b]$.

THEOREM 2. If the two conditions (1) and (2) are satisfied for the sequence of positive linear functionals σ_n on C[a, b] and

$$g(x) = \sin^2 \frac{x-c}{2},$$

where $a \le c \le b$, then (4) is true for $f \in C[a, b]$ which has the period 2π . In this paper, we shall prove an abstract theorem which is a

generalization of these theorems of Korovkin.

2. We shall introduce a few terms before we state our theorem. If a commutative Banach algebra A has an involution $x \rightarrow x^*$ satisfying $||xx^*|| = ||x||^2$ for any element x of A, then A will be called a commutative B^* -algebra. If a linear functional σ on a B^* -algebra Asatisfies the condition that $\sigma(xx^*) \ge 0$ for any element x of A, we shall say that σ is positive. It is well-known [4; p. 213] that a positive linear functional σ on a B*-algebra A satisfies the inequality of Cauchy-Schwarz:

$$|\sigma(x^*y)|^2 \leq \sigma(|x|^2)\sigma(|y|^2)$$

for any $x, y \in A$, where $|x| = (x^*x)^{\frac{1}{2}}$. We shall call a positive linear functional σ a state whenever $\sigma(1)=1$ where 1 is the identity element of A. If a state χ of a commutative B^* -algebra is not expressible by a convex sum of two other states, χ will be called a *character*. It is also well-known [4; p. 229], that a character χ determines a maximal ideal M uniquely such as $M = \{x: \chi(x) = 0\}$, and conversely that a maximal ideal M determines a character χ uniquely such that $\chi(x)$ coincides with the natural homomorphism of A onto A/M. Henceforth we shall call briefly that the character χ is defined by a maximal ideal M when χ corresponds with M in the above sense.

3. In what follows, we shall prove the following

THEOREM 3. Let A be a commutative B^* -algebra with the identity element 1, M a principal maximal ideal generated by a, and χ the character defined by M. If the two conditions (1) and

(6)
$$\sigma_n(|a|^2) \rightarrow 0, \quad as \quad n \rightarrow \infty,$$

are satisfied for the sequence of positive linear functionals σ_n on A, then σ_n converges weakly* to χ :

$$\lim_{n\to\infty}\sigma_n(x)=\chi(x),$$

for any $x \in A$.

Proof. By the inequality of Cauchy-Schwarz and the assumption, $|\sigma_n(ax)|^2 \le \sigma_n(|x|^2)\sigma_n(|a|^2) \le ||x||^2\sigma_n(|a|^2) \to 0$,

as $n\to\infty$, for any $x\in A$, whence $\sigma_n(ax)\to 0$. Since aA is dense in M by the assumption, $\sigma_n(y)$ converges to 0 for any $y\in M$. On the other hand, M is a hyperplane of A on which χ vanishes, whence each $x\in A$ is expressed in $x=\alpha 1+y$ by some $y\in M$ and a certain complex number α . Hence we have

$$\sigma_n(x) = \sigma_n(\alpha 1 + y) = \alpha \sigma_n(1) + \sigma_n(y) \rightarrow \alpha = \chi(x),$$

as $n \to \infty$, for any $x \in A$.

4. At this end, we shall show that Theorem 3 implies Korovkin's theorems.

Let A=C[a,b]. Clearly A is a B^* -algebra with the identity element. Let M be the set of all elements of C[a,b] vanishing at c and P the set of all polynomials. It is clear that M is a maximal ideal of A. Since P is dense in A, by a theorem of Yamabe (cf. $[1; \operatorname{ch. 1, ex. 18, p. 55}]$ or [2]) $P \cap M$ is dense in M. Now, let us define h(x)=x-c. Obviously h satisfies (6) since $g=h^2$ satisfies (2). Moreover, h generates M since each element of $P \cap M$ is divisible by h. Thus the all assumptions of Theorem 3 are satisfied and (7) implies (4), which proves Theorem 1.

Theorem 2 is also obtained similarly.

References

- [1] N. Bourbaki: Espaces vectoriels topologiques, Actual. Sci. Ind., no. 1189, Paris (1953).
- [2] H. Choda and K. Matoba: On dense linear subsets of normed linear spaces, Mem. Osaka Univ. of Liberal Arts & Ed., Ser. B, No. 9 (1960).
- [3] P. P. Korovkin: Linear Operators and Approximation Theory, Hindustan (1960).
- [4] C. E. Rickart: General Theory of Banach Algebras, D. van Nostrand (1960).