21. Normality and Perfect Mappings

By Takesi ISIWATA Tokyo Gakugei University (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1963)

We assume that the spaces considered here are always completely regular T_1 -spaces. A mapping φ from X onto Y is said to be perfect if φ is a closed continuous mapping and every $\varphi^{-1}(y), y \in Y$, is compact, i.e., φ is a compact mapping. Let E be any dense subspace of a given space X. It is easy to see that the normality of $X \times \beta E$ implies the normality of $X \times BE$ where BE is any compactification of E and βE is the Stone-Čech compactification of E. But the following problem is open [1, §4].

(*) Does the normality of $X \times BE$ implies the normality of $X \times \beta E$?

This problem is closely related to the following open problem [1, problem 4]:

 $(**)^{1}$ Let φ be a perfect mapping from X onto Y such that the image of any proper closed subset of X is a proper closed subset of Y. Is it true that X is normal whenever Y is normal?

In §1, we shall investigate some special class of spaces, and, in §2, we shall give the negative answers to the problems (*) and (**).

In the sequel, ω_{α} denotes the smallest ordinal of cardinal \aleph_{α} and we mean by $W(\omega_{\alpha})$ the set of all cardinals less than ω_{α} ; then $W(\omega_{\alpha})$ $(\alpha \neq 0)$, endowed the interval topology, is a countably compact normal space and there are no subsets of cardinal $\langle \aleph_{\alpha} \rangle$ which are cofinal [6, 9K].

1. Closedness of projections. We mean by $\varphi(\text{or } \varphi_X): X \times Y \to X$ the projection $\varphi(x, y) = x$ from $X \times Y$ onto X. Let \Re be the class consisting of all X such that $\varphi: X \times Y \to X$ is always closed for any countably compact space Y.

1.1. Lemma. If X has the property such that for any point p and any subset E of X, there is a sequence in E converging to p whenever p is an accumulation point of E, then X belongs to \Re .

Proof. Let Y be a countably compact space and F a closed subest of $X \times Y$ such that the image E of F under $\varphi: X \times Y \rightarrow X$ is not closed. There is a point p in $\overline{E}-E$. By the assumption, there is a sequence (x_n) in E converging to p. Let (x_n, y_n) be a point of F for every n. Since Y is countably compact, there is an accumula-

¹⁾ This problem is raised by Nagami [7] in connection with Ponomarev's theorem [8].

tion point y of $\{y_n\}$. It is easy to see that (p, y) is an accumulation point of $\{(x_n, y_n)\}$ and hence $(p, y) \in F$ because F is closed. This shows that $p \in F$. This is a contradiction.

From 1.1, if either X satisfies the first axiom of countability or X is the one-point compactification of a discrete space, then X belongs to \mathfrak{N} . Moreover it is easily seen that if $X \in \mathfrak{N}$, then any subspace X belongs to \mathfrak{N} and the image of X under a closed mapping belongs to \mathfrak{N} .

1.2. Lemma. If $X \in \mathbb{N}$ and E is a countably compact subset of X, then E is closed.

Proof. Suppose that E is not closed. Let us put $\Delta = \{(e, e); e \in E\}$ and $\varphi: X \times E \to X$. The subset Δ is closed in $X \times E$, but $\varphi(\Delta) = E$ is not closed in X. This is a contradiction.

1.3. Theorem. Let X be a locally compact space: then $X \in \mathfrak{N}$ if and only if any countably compact subset of X is closed.

Proof. Necessity follows from Lemma 1.2. To prove the sufficiency, suppose that $\varphi: X \times Y \to X$ is not closed for some countably compact space Y. Let F be a closed subset of $X \times Y$ such that $E = \varphi(F)$ is not closed, that is, there is a point p in $\overline{E} - E$. Since X is locally compact, there is a compact neighborhood U of p and $F_U = F \frown (U \times Y)$ is closed and hence a countably compact subset of $U \times Y$ since $U \times Y$ is countably compact. Thus $\varphi(F_U)$ is countably compact and hence it is closed in X by the assumption. Therefore we have $p \in \varphi(F_U) \subset \varphi(F) = E$. This is a contradiction.

1.4. Theorem. Let X be a paracompact locally compact space: then $X \in \mathbb{N}$ if and only if $X \times Y$ is normal for any countably compact normal space Y.

Proof. Sufficiency. Let Y be a countably compact normal space. Suppose that there is a closed subset F in $X \times Y$ whose image E under $\varphi: X \times Y \to X$ is not closed, and hence there is a point p in $\overline{E} - E$. Since E is locally compact, there is a compact neighborhood U of p and $U \times Y$ is countably compact. A mapping $\varphi_U: U \times Y \to U$ is a Z-mapping, that is, any zero-set of $U \times Y$ is mapped onto a closed subset of U by $\varphi_U[2]$. Since $U \times Y$ is normal, it is easy to see that φ_U is closed. This means that $p \in \varphi_U(F \cap (U \times Y)) \subset \varphi(F) = E$. This is a contradiction.

Necessity follows from the following theorems: let f be a closed mapping from Z onto a paracompact space X, then the followings are equivalent: 1) Z is normal, 2) $f^{-1}(x)$ is normal and normally embedded in Z for each $x \in X[3]$ and 3) for each $x \in X$, any two disjoint closed subset of $f^{-1}(x)$ can be separated by open sets of Z[4].

2. Answers to problems. 2.1. Problem (*). Let $X = X(\omega_{\alpha})(\alpha \neq 0)$, E the discrete subset of X consisting of all non-limit ordinals and let $M = E \subseteq \{p\}$ be the one point compactification of E. By 1.1 and 1.4, $X \times M$ is normal. On the other hand $X \times \beta E$ is not normal. For if $X \times \beta E$ is normal, then $X \times W(\omega_{\alpha}+1) = T$ is normal because T is the image of $X \times \beta E$ under the closed mapping ψ constructed by the following way; let φ be a Stone extension mapping from βE onto $W(\omega_{\alpha}+1)$ of the identity mapping on E, and ψ be a mapping: $\psi(x, y)$ $=(x, \varphi(y)), x \in X, y \in \beta E$; then φ is compact and closed, and hence ψ becomes to be closed $\lceil 5 \rceil$. On the other hand, we proved that the product $Y \times Z$ of a non-compact countably compact normal space Y with its any compactification Z is not normal $\lceil 9 \rceil$. Thus $X \times \beta E$ is not normal which is a negative answer to problem (*).

2.2. Problem (**). We shall use E and X in 2.2. Let f be a Stone extension mapping from βE onto M of the identity mapping on E. Then a mapping $\varphi(x, y) = (x, f(y))$, from $X \times \beta E$ onto $X \times M$ is a perfect mapping [5]. Let F be a proper closed subset of $X \times \beta E$. Since $U = X \times \beta E - F$ is open and $X \times E$ is dense in $X \times \beta E$, U contains Then $\varphi^{-1}(x, e)$ $(x \in X, e)$ a point a = (x, e), where $x \in X$ and $e \in E \subset \beta E$. $e \in E \subset M$) consists of only one point a. Thus $\varphi(F) \neq X \times M$, i.e., φ is a proper mapping. This is a negative answer to problem (**).

2.3. The Stone-Čech compactification of a discrete space does not belong to \mathfrak{N} .

Proof. Any discrete space is homeomorphic to the set of all non-limit ordinal of a space $W(\omega_{\alpha})$ for a suitable \aleph_{α} . We have 2.3 by the method used as in the proof of 2.1.

References

- [1] H. Tamano: On compactifications, Journ. Math. Kyoto Univ., 1, 161-193 (1962).
- [2] H. Tamano: A note on the pseudocompactness of the product spaces, Memoirs of the College of Science, Kyoto Univ., ser. A, 23, 225-230 (1923).
- [3] H. Tamano: A theorem on closed mapping, ibid., 309-315.
- [4] S. Hanai: Inverse images of closed mappings. II, Proc. Japan Acad., 37, 302-304 (1961).
- [5] K. Morita: Note on paracompactness, ibid., 1-3.
- [6] L. Gillman and M. Jerison: Rings of Continuous Functions, Van Norsrand Princeton, N.J. (1960).
- [7] K. Nagami: A note on Hausdorff spaces with the star-finite property. II, Proc. Japan Acad., 37, 189-192 (1961).
- [8] V. Ponomarev: Normal spaces as images of zero-dimensional spaces, Doklay Acad. Nauk USSR, 132, 1969-1272 (1960).
- [9] T. Isiwata: Normality of the product spaces of countably compact space with its any compactification, Sci. Reports of Tokyo Kyoiku Univ., 6, 181-184 (1958).

No. 2]