59. On Bochner Transforms

By Koziro Iwasaki
Musashi Institute of Technology, Tokyo
(Comm. Zyoiti Suetuna, m.J.A., May 11, 1963)

1. If $\varphi(r)$ is a function of the distance r from the origin of h-dimensional Euclidean space, then the Fourier transform of $\varphi(r)$, that is the integral transform by the kernel function $\exp \left(2 \pi_{i}\left(x_{1} y_{1}+\right.\right.$ $\left.+\cdots+x_{h} y_{h}\right)$), is also a function of r and is expressed as following:

$$
T \varphi(r)=2 \pi r^{1-\frac{h}{2}} \int_{0}^{\infty} J_{\frac{h}{2}-1}(2 \pi r \rho) \rho^{\frac{h}{2}} \varphi(\rho) d \rho
$$

where $J_{\nu}(x)$ is Bessel function ([1] p. 69, Theorem 40).
By the general theory of Fourier transform the linear operator T has the properties:
(a) T transforms $\varphi(u r)$ to $|u|^{-h} T \varphi\left(\frac{r}{u}\right)$ if $u \neq 0$,
(b) T transforms $e^{-\pi r^{2}}$ to $e^{-\pi r^{2}}$,
(c) there exists a number series $\left\{a_{0}, a_{1}, \cdots\right\}$ which satisfies $\sum_{n=0}^{\infty} a_{n} \varphi(\sqrt{n})=\sum_{n=0}^{\infty} a_{n} T \varphi(\sqrt{n})$ (Poisson summation formula),
(d) $T^{2} \varphi=\varphi$ (the inversion formula),
and
(e) $\int_{0}^{\infty}|T \varphi(r)|^{2} r^{k-1} d r=\int_{0}^{\infty}|\varphi(r)|^{2} r^{k-1} d r$ (Parseval formula).

In his paper [2] Bochner proved that the properties (a), (b) and (c) characterize the operator T.

We shall describe here the theorem of Bochner in somewhat modified form:

Let us denote by \mathfrak{R}_{0} the family of all functions $\varphi(x)$ on $[0, \infty)$ such that $\left(\frac{d}{x d x}\right)^{r} \varphi(x)$ exists at 0 for any r and every derivative of $\varphi(x)$ decreases rapidly as x tends to infinity.

Theorem of Bochner. Let T be a linear operator from \mathfrak{P}_{0} to P_{0} which satisfies the following conditions:
(A) T transforms $\varphi(u x)$ to $|u|^{-h} T \varphi\left(\frac{x}{u}\right)$ for any $u \neq 0$, where h is a positive constant,
(B) $e^{-\frac{2 \pi}{\lambda} x^{2}}$ is an eigenfunction of T, where λ is a positive constant, and
(C) there exists number series $\left\{a_{0}, a_{1}, a_{2}, \cdots\right\}$ such that $\sum_{n=1}^{\infty} \frac{\left|a_{n}\right|}{n^{s_{0}}}$ converges for a positive number s_{0} and

$$
\sum_{n=0}^{\infty} a_{n} \varphi(\sqrt{n})=\sum_{n=0}^{\infty} a_{n} T \varphi(\sqrt{n})
$$

for any $\varphi(x)$ in \mathfrak{B}_{0}, then $T \varphi(x)$ is equal to the Bochner transform

$$
T_{\lambda, h} \varphi(x)=\frac{4 \pi}{\lambda} x^{-\frac{h}{2}+1} \int_{0}^{\infty} J_{\frac{h}{2}-1}\left(\frac{4 \pi}{\lambda} x t\right) t^{\frac{h}{2}} \varphi(t) d t
$$

of $\varphi(x)$ or equal to $-T_{\lambda, h} \varphi(x)$, and the Mellin transform of $T_{\lambda, h} \varphi(x)$ is $\Phi(h-s)\left(\frac{2 \pi}{\lambda}\right)^{-s+\frac{h}{2}} \Gamma\left(\frac{s}{2}\right) / \Gamma\left(\frac{h-s}{2}\right)$ where $\Phi(s)$ is the Mellin transform of $\varphi(x)$.

At this opportunity it may be remarked that the result of our previous paper [3] is a direct consequence of Bochner's theory.

In the following we shall investigate the properties of $T_{\lambda, k}$ and give a generalization of the central limit theorem in the probability theory (Proposition 9).
2. Using Bochner's theorem it is easily proved that the Mellin transform of $T^{2} \varphi$ is equal to $\Phi(s)$. Therefore we get

Proposition 1. $T_{\lambda, k}\left(T_{\lambda, k} \varphi\right)=\varphi$.
Moreover an analogy of Parseval formula can be stated as follows:
Proposition 2. $\int_{0}^{\infty} x^{h-1}\left|T_{2, h} \varphi(x)\right|^{2} d x=\int_{0}^{\infty} x^{h-1}|\varphi(x)|^{2} d x$.
Proof. We have

$$
\begin{aligned}
& \int_{0}^{\infty} x^{h-1}\left|T_{\lambda, h} \varphi(x)\right|^{2} d x \\
= & \left(\frac{4 \pi}{\lambda}\right)^{2} \int_{0}^{\infty} x d x \int_{0}^{\infty} J_{\frac{h}{2}-1}\left(\frac{4 \pi}{\lambda} x t\right) t^{\frac{h}{2}} \varphi(t) d t \cdot \int_{0}^{\infty} J_{\frac{h}{2}-1}\left(\frac{4 \pi}{\lambda} x u\right) u^{\frac{h}{2}} \overline{\varphi(u)} d u \\
= & \int_{0}^{\infty} u^{\frac{h}{2}} \overline{\varphi(u)} d u \int_{0}^{\infty} J_{\frac{h}{2}-1}(x u) x d x \int_{0}^{\infty} J_{\frac{h}{2}-1}(x t) t\left(t^{\frac{h}{2}-1} \varphi(t)\right) d t .
\end{aligned}
$$

By Hankel's inversion formula (Titchmarsh [4] p. 241, Watson [5], p. 456 (1)) this is equal to

$$
\int_{0}^{\infty} u^{\frac{h}{2}} \overline{\varphi(u)} \cdot u^{\frac{\hbar}{2}-1} \varphi(u) d u
$$

Corollary. $\quad \int_{0}^{\infty} x^{h-1} T_{\lambda, h} \varphi(x) T_{\lambda, h} \psi(x) d x=\int_{0}^{\infty} x^{h-1} \varphi(x) \psi(x) d x$.
Now we shall give a relation between $T_{\lambda, h}$ and $T_{\lambda, h+2}$. Because $\frac{d}{d x}\left(x^{\nu} J_{\nu}(x)\right)=x^{\nu} J_{\nu-1}(x)$ we have, integrating by parts,

$$
T_{2, h} \varphi(x)=-x^{-\frac{h}{2}} \int_{0}^{\infty} J_{\frac{h}{2}}\left(\frac{4 \pi}{\lambda} x t\right) t^{\frac{h}{2}} \varphi^{\prime}(t) d t
$$

Thus we have
Proposition 3. For $h>0, T_{\lambda, h} f(x)$ is equal to $-\frac{\lambda}{4 \pi} T_{\lambda, h+2}\left\{\frac{1}{x} f^{\prime}(x)\right\}(x)$ if $\frac{1}{x} f^{\prime}(x)$ is defined at $[0, \infty)$.

Then, we estimate the value of $T_{\lambda, h} f(x)$:

$$
\begin{aligned}
T_{\lambda, h} f(x) & =-\frac{\lambda}{4 \pi} T_{\lambda, h+2}\left\{\frac{d}{x d x} f(x)\right\} \quad \text { (Proposition 3) } \\
& =\left(-\frac{\lambda}{4 \pi}\right)^{r} T_{\lambda, h+2 r}\left\{\left(\frac{d}{x d x}\right)^{r} f(x)\right\} \\
& =O\left(x^{-\left(\frac{h}{2}+r-1\right)-\frac{1}{2}} \int_{0}^{\infty} t^{\frac{h}{2}+r-\frac{1}{2}}\left|\left(\frac{d}{t d t}\right)^{r} f(t)\right| d t\right)
\end{aligned}
$$

because $J_{p}(x)=O\left(x^{-\frac{1}{2}}\right)$.
Proposition 4. Let h be a positive number, r be a non-negative integer and $f(x)$ be a function such that

$$
\begin{aligned}
& \int_{0}^{\infty}\left|\left(\frac{d}{t d t}\right)^{r} f(t)\right| t^{\frac{h}{2}+r-\frac{1}{2}} d t \text { exists. Then } \\
& \quad T_{2, h} f(x)=O\left(x^{-\frac{h}{2}-r+\frac{1}{2}} \int_{0}^{\infty}\left|\left(\frac{d}{t d t}\right)^{r} f(t)\right|^{t^{\frac{h}{2}+r-\frac{1}{2}}} d t\right) .
\end{aligned}
$$

Using the identity

$$
\frac{d}{d x}\left(x^{-\nu} J_{\nu}(x)\right)=-x^{-\nu} J_{\nu+1}(x)
$$

we can calculate the derivative of $T_{\lambda, h} \varphi(x)$. Namely,

$$
\begin{aligned}
\frac{d}{d x}\left(T_{\lambda, h} \varphi(x)\right) & =\frac{d}{d x}\left(\frac{4 \pi}{\lambda} \int_{0}^{\infty} x^{-\frac{h}{2}+1} J_{\frac{h}{2}-1}\left(\frac{4 \pi}{\lambda} x t\right) t^{\frac{h}{2}} \varphi(t) d t\right) \\
& =\frac{4 \pi}{\lambda} \int_{0}^{\infty}\left(-\frac{4 \pi}{\lambda} t x^{-\frac{h}{2}-1} J_{\frac{h}{2}}\left(\frac{4 \pi}{\lambda} x t\right)\right) t^{\frac{h}{2}} \varphi(t) d t \\
& =-\frac{4 \pi}{\lambda} x T_{\lambda, h+2} \varphi(x)
\end{aligned}
$$

Proposition 5. $\frac{d}{d x}\left(T_{\lambda, h} \varphi(x)\right)=-\frac{4 \pi}{\lambda} x T_{2, h+2} \varphi(x)$.
The existence of the following proposition is the reason why we select in (B) the special eigenfunction $e^{-\frac{2 \pi}{\lambda} x^{2}}$.

Proposition 6. If $\varphi(x)$ is an eigenfunction with respect to $T_{\lambda, h}$ and $T_{\lambda, h+2}$ belonging to \mathfrak{P}_{0}, then $\varphi(x)$ is of the form $c e^{-\frac{2 \pi}{\lambda} x^{2}}$.

Proof. Let

$$
T_{\lambda, h} \varphi(x)=\alpha \varphi(x) \text { and } T_{\lambda, h+2} \varphi(x)=\beta \varphi(x)
$$

Then α and β are equal to 1 or -1 by Proposition 1, and $\alpha \varphi^{\prime}(x)$ $=-\frac{4 \pi}{\lambda} x \beta \varphi(x)$ by Proposition 5. (Q.E.D.)

Now we have to introduce a topology on the linear space \mathfrak{P}_{0}. We take as a basis of neighbourhoods of 0 the family of the sets of the following type:

$$
\begin{aligned}
V(n, m, \varepsilon)= & \left\{\varphi \in \mathfrak{P}_{0}:\left|(1+x)^{m}\left(\frac{d}{x d x}\right)^{j} \varphi(x)\right|<\varepsilon\right. \\
& \text { for any } x \geq 0 \text { and for } j=0,1,2, \cdots, n\},
\end{aligned}
$$

where n, m are arbitrary non-negative integers and ε is an arbitrary positive number. Concerning the Theorem of Bochner, we shall add the following

Proposition 7. $(\varphi, \psi) \rightarrow \varphi \psi$ is a continuous linear mapping from $\mathfrak{P}_{0} \times \mathfrak{P}_{0}$ to \mathfrak{P}_{0} and $\varphi \rightarrow T_{\lambda, h} \varphi$ is a continuous linear mapping from \mathfrak{F}_{0} onto itself.

Proof. The continuity of $(\varphi, \psi) \rightarrow \varphi \psi$ is a direct consequence of the definition of our topology. By Proposition 5 it is enough to prove the remainder of the proposition if we show for any given g, l and ε there exists a neighbourhood of 0 such that $\left|(1+x)^{\imath} T_{\lambda, g} \varphi(x)\right|<\varepsilon$ for all $x \geq 0$. In the case $x \geq 1$ this is proved by Proposition 4 and in the case $0 \leq x \leq 1$ by the continuity of $x^{-\nu} J_{\nu}(x)$.
4. For two functions $\varphi\left(x_{1}, \cdots, x_{h}\right)$ and $\psi\left(x_{1}, \cdots, x_{h}\right)$ in h-variables the convolution of φ and ψ is defined by the formula

$$
\varphi * \psi\left(x_{1}, \cdots, x_{h}\right)=\int \cdots \int \varphi\left(x_{1}-t_{1}, \cdots, x_{h}-t_{h}\right) \psi\left(t_{1}, \cdots, t_{h}\right) d t_{1} \cdots d t_{h} .
$$

If φ and ψ depend only on $x=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$, then $\varphi * \psi$ is also a function in x only. And it is well known, if we regard $\varphi(x)$ and $\psi(x)$ as functions in x,

$$
T_{2, h}(\varphi * \psi)=T_{2, h} \varphi \cdot T_{2, h} \psi
$$

Now we shall define the (λ, h) convolution $*_{\lambda, h}$ for any pair of positive numbers λ and h using the operator $T_{\lambda, h}$, that is,

$$
\varphi *_{\lambda, h} \psi=T_{\lambda, h}\left(T_{\lambda, h} \varphi \cdot T_{\lambda, h} \psi\right) .
$$

Proposition 8. (λ, h) convolution has the properties:
(i) if $\lambda=2$ and h is a natural number then $*_{\lambda, h}$ is identical with ordinary h-dimensional convolution,
(ii) $T_{\lambda, h}\left(\varphi *_{\lambda, h} \psi\right)=T_{\lambda, h} \varphi \cdot T_{\lambda, h} \psi$,
(iii) it is associative and commutative,
(iv) $(\varphi, \psi) \rightarrow \varphi *_{\lambda, n} \psi$ is a continuous bilinear mapping $\mathfrak{B}_{0} \times \mathfrak{B}_{0}$ to \mathfrak{P}_{0}, and
(v) $\varphi *_{\lambda, h} \psi(0)=\frac{1}{\Gamma\left(\frac{h}{2}\right)}\left(\frac{2 \pi}{\lambda}\right)^{\frac{h}{2}} \int_{0}^{\infty} t^{h-1} \varphi(t) \psi(t) d t$.
Proof. We get (i), (iii) directly from the definition of $*_{\lambda_{, h}}$, (ii) by Proposition 1 and (iv) is a consequence of Proposition 7.

Finally we shall prove (v). By the Theorem of Bochner we have

$$
T_{\lambda, h} \varphi(0)=\left(\frac{2 \pi}{\lambda}\right)^{\frac{h}{2}} \frac{1}{\Gamma\left(\frac{h}{2}\right)} \int_{0}^{\infty} t^{h-1} \varphi(t) d t \text { for any } \varphi \text { in } \mathfrak{P}_{0}
$$

Therefore

$$
\varphi *_{\lambda, h} \psi(0)=\left(\frac{2 \pi}{\lambda}\right)^{\frac{\lambda}{2}} \frac{1}{\Gamma\left(\frac{h}{2}\right)} \int_{0}^{\infty} t^{h-1} T_{\lambda, h} \varphi(t) T_{\lambda, h} \psi(t) d t
$$

$$
=\left(\frac{2 \pi}{\lambda}\right)^{\frac{h}{2}} \frac{1}{\Gamma\left(\frac{h}{2}\right)} \int_{0}^{\infty} t^{h-1} \varphi(t) \psi(t) d t
$$

by Corollary of Proposition 2. (Q.E.D.)
Now we shall give an analogy of the central limit theorem in the probability theory.

Proposition 9. Put $\alpha=\frac{1}{\Gamma\left(\frac{h}{2}\right)}\left(\frac{2 \pi}{\lambda}\right)^{\frac{h}{2}} \int_{0}^{\infty} x^{h-1} \varphi(x) d x$ and $\beta=\frac{1}{\Gamma\left(\frac{h}{2}+1\right)}\left(\frac{2 \pi}{\lambda}\right)^{\frac{h}{2}+1} \int_{0}^{\infty} x^{h+1} \varphi(x) d x$. Let α be different from 0 and $\alpha \beta$ be greater than 0. Put

$$
\psi_{n}=\left(\frac{n \beta}{\alpha}\right)^{\frac{h}{2}} \alpha^{-n} \underbrace{\varphi_{2, h} \varphi *_{\lambda, h} \cdots *_{2, h} \varphi}_{n} \underbrace{\frac{n \beta}{\alpha}} x) .
$$

Then ψ_{n} converges to $e^{-\frac{2 \pi}{\lambda} x^{2}}$ as n tends to infinity.
Proof. First we shall calculate the McLaurin expansion of $T_{\lambda, h} \varphi(x)$. By Proposition 5 we have

$$
\frac{d}{d x} T_{\lambda, h} \varphi(0)=0, \quad \frac{d^{2}}{d x^{2}} T_{\lambda, h} \varphi(0)=-\frac{4 \pi}{\lambda} T_{\lambda, h+2} \varphi(0), \quad \frac{d^{3}}{d x^{3}} T_{\lambda, h} \varphi(0)=0
$$

and
$\frac{d^{4}}{d x^{4}} T_{\lambda, h} \varphi(x)=3\left(\frac{4 \pi}{\lambda}\right)^{2} T_{\lambda, h+4} \varphi(x)-6\left(\frac{4 \pi}{\lambda}\right)^{3} x^{3} T_{\lambda, h+6} \varphi(x)+\left(\frac{4 \pi}{\lambda}\right)^{4} x^{4} T_{\lambda, h+8} \varphi(x)$.
Therefore

$$
\begin{gathered}
T_{2, h} \varphi(x)=T_{2, h} \varphi(0)-\frac{1}{2!} \frac{4 \pi}{\lambda} T_{2, h+2} \varphi(0) x^{2}+R(\theta x) x^{4} \\
=\alpha-\frac{2 \pi}{\lambda} \beta x^{2}+R(\theta x) x^{4}
\end{gathered}
$$

where $R(x)$ is a locally uniformly bounded function. Then we get

$$
\begin{aligned}
T_{\lambda, h} \psi_{n}(x) & =\alpha^{-n} T_{\lambda, h}\left(\varphi *_{\lambda, h} \cdots *_{\lambda, h} \varphi\right)\left(\frac{x}{\sqrt{\frac{n \beta}{\alpha}}}\right) \\
& =\left(\alpha^{-1} T_{\lambda, h} \varphi\left(\frac{x}{\sqrt{\frac{n \beta}{\alpha}}}\right)\right)^{n} \\
& =\left(1-\frac{2 \pi}{\lambda} \cdot \frac{x^{2}}{n}+O\left(\frac{x^{4}}{n^{2}}\right)\right)^{n}
\end{aligned}
$$

and the last term tends to $e^{-\frac{2 \pi}{\lambda} x^{2}}$. Because $T_{\lambda, h}$ is continuous on \Re_{0}, $\psi_{n}=T_{\lambda, h}\left(T_{\lambda, h} \psi_{n}\right)$ converges to $T_{\lambda, h} e^{-\frac{2 \pi}{\lambda} x^{2}}=e^{-\frac{2 \pi}{\lambda} x^{2}}$.

References

[1] S. Bochner and K. Chandrasekharan: Fourier Transforms, Princeton (1949).
[2] S. Bochner: Some properties of modular relations, Ann. of Math., 53 (2), 332363 (1951).
[3] K. Iwasaki: Some characterizations of Fourier transforms. IV, Proc. Japan Acad., 38 (8), 419-421 (1962).
[4] E. C. Titchmarsh: Introduction to the Theory of Fourier Integrals, Oxford (1937).
[5] G. N. Watson: A Treatise on the Theory of Bessel Functions, Cambridge (1922).

