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78. On the Uniqueness of Solutions of the Cauchy Problem
for Hypoelliptic Partial Differential Operators

By Hitoshi KumMANO-GO
Department of Mathematics, Osaka University
(Comm. by Kinjird6 KUNUGI, M.J.A., June 12, 1963)

1. Introduction. L. Hirmander in the note [2] proved the
following: For a differential operator L with constant coefficients
the uniqueness of solutions for the Cauchy problem does not hold in
the class C=, if the initial plane is characteristic for L.

The object of this note is to prove the uniqueness of solutions
for the Cauchy problem, whose initial plane may be characteristic,
under the restriction of the class of possible solutions which belong
to {u;exp(—@+ |z|)"?) - ueCh r(D;,)} defined in the section 2. Let
R'* be the (1+v)-dimensional Euclidean space with coordinates (¢, x)
=(t, %y, -+, 2,), and (m, m)=(m, my,- -+, m,) (m,<2m; j=1,--+,v) be an
appropriate real vector whose elements are positive integers. We
shall consider differential operators L of the form

+lal

1.1 — . )=

(1.1) L i/m+§m, _ Gty oc) T (@ oft, £)=1)
(a:(ai,- oo, av); wa=w;1. ':”,

la|=a,+ - a,, |a:m|=a/m,+ - +a,/m,)
where a, .(t, ) belong to B, ,, in [0, T]XR*. Here we remark this
class is an extension of the result of S. Mizohata [6] and contains
the operators of the form

(1.2) L=(—1ya 2 4 (—1ym
ot’ la|=2
where s=m and “2_2 A (t, £)e*=6>0 for |&|=1; see [5].

D

2. Definitions and lemmas. We set the associated polynomials
L(t,z,2,¢&) of (1.1) for real vectors (1, &)=(1, &,--+,¢&,)
(2.1) L(¢, @, 2, 5)— E _ Gt 22 (an, ot 2)=1).

mt fa
Let us define »=r(¢) as a posmve root of the equation 252 “2my=1

(¢x0), and set K(¢)= {Z grsy/#.  Then, we have

(2 2) MmK(S)é,rl/zmévl/ZK(g) lalal/ag«r(e)l/im lécaz)K(S)l—mnIm:ml.
The proof is given in [4], but in this case we must replace m by 2m.
We denote by £, a function space

8= fue B, llull= [+ K@)l Pds <o},

1) For these operators, a;(¢) in (8.1) of this note are constants,
2) In what follows constants C are always positive.
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where ﬁ($)=—1=—; f e~ ""ty(x)dx (Fourier transform of w), wu(t)
J2n
=u(t, )€ Ch (9, means that u(f) belongs to , and k-times continu-
ously differentiable in the topology of 9,.
If we write for real vectors 7=(7, -, 7,)%0, L(t, =, 2, V—17|7|"?)

:=if[1 (24 2,,,(t, 2, 1)) and define a matrix R by

p¥m
R=| . .
0 p¥m)/,
Then, we can write

(2.3) L(t, », 2,/ —1 §)=ﬁ (420, x, ER"Dr/™);  see [4].

Definition 1. We call_}I a singular integral operator of class
Cir with the symbol o(H) (@, &)=3}a,(®)h,() (@,(2)¢ Beur hi(€) € Cinos
r=1,2,..-) if we have for everyr-lj a and B

| 0114191 /202" @, (), (€) | S Ce s K@M (r=1,2,- - ).
Then, for ueL*=9, Hu is defined by

Hu:rz_l_- femeaw)(x, £)u(e) de.

Definition 2. An operator 4 is defined by @(5)=/1A($)@(E) for
ueP,, where /f(&)ng’;;m and for every a satisfies the condition
|011/0°A(8) | S CK (@)= 1=m,
If 2(z,7n) (¢C&,»NBw for nx0) is homogeneous of order zero in

7, then by [1] we can expand it as 2,(z, n)zi‘ar(x)/ﬁo,r(n). Hence, if we

set B, (&)=ho (ER")(r=1,2,--), we can write iz, ER")=2a,(0)k,(€)
r=1

which becomes the symbol of an operator of class Ci™ see [4]. Further-

more, if we set //1\(§)=r($)1’2’”, then by (2.2) we can define an operator A.
For the operators defined in the above definitions the following
lemma is easily verified by essentially same methods with [7] and
[8] if we remark 2m|a:m|=|a| by assumption m,<2m (5=1,---,v).
Lemma 1. i) Let P be an operator of class Ci* with the real
valued symbol. Then PA—AP*® is bounded in £,.
iil) For H, H, and H, (¢C}), we have for any positive integer
» and q the following representations:
(24) HA*—A*H=H, A*"'4+-H},, (HH,—H,°H,)* A=H,+H,,
where H,,, H,cCi» and A'Hj A, AHA7 (0=<i+j<q) are bounded
m 9,.

3) P* ig the adjoint operator of P.
4) Hio H; means an operator of class Ci™ with o(Hi o Ha)=o(H1)o(Ho).
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iii)y For the operator H (eC¥) such as |o(H)|=6>0, we have
(25) | HAPw 228 | HAPu | =C | ul

Lemma 2. Let H°=H(t) be a bounded operator defined in 9,
and strongly continuous together with its derivative in [0, T], and
Jor u, ve®, satisfy the conditions:

) [ H|zd|| A2u|*~Cllul]* (6>0),
26) i) |H, w) | el A%ulF4+Ceulf (0<e<1),
iii) (H', v)=(u, H%) (self-adjoint).
Then, for the operator J°=d/dt-+(1+y—1a(t)) HY(t) (a(t)eCh r; real
valued) and u=u(t)eCl,n(H.) such as u(0)=u(h)=0 (0<h=T), we
have with ¢=1+h""t

h h I
2.7 50‘2”HJ°u||2dt200{h" o || Aul]*dt+h* ¢’2”|Iull2dt}
/ / /
Jor a constant C,, sufficiently small h and every n(=1).
Proof. We set u=¢"v, then veC}, »(9,) and v(0)=v(h)=0.
[ore Tl de= [l V=T aB)+(Ho v+ nho o ) e
0 0

_2_2Refh(v'+«/——1aH"v, H+nh'p"v) dt+f"'”H°v+nh-l¢-1v”2dt
0 0

and using ii) and iii) of (2.6) and v(0)=v(h)=0 we can continue

h d o _ h o { h -1 9
gof & (H,v)dt [(H v, v) di+ Ofnh ot v || dt
+ [ E =20kt | HO || o]+ nth | o | dt}

0
_ " 2,112 -1 2 1M1 09y ||2 -2, -2 2
2= [ ellaroipeCe ol der 7 [ (T IEIFEnb~t ol d.

Now, if we set ¢=4/8n and apply i) of (2.6) to H%, then remarking
¢ 2=1/4 (0=t<h) we have for sufficiently small %

" -2n 0 2 5 " 2, 2 1 -2 " 2
ofso | o | d@?ﬁof 1 4%0|[*dt -+ nh Ofnvu dt.

As R Av|EP<n || A2 |*+nh 2||v]|? and v=¢ "u, we get (2.7).
Q.E.D.
Lemma 3. Let H(t) (i=1,---,k) be of class C with t as a
parameter and (k—1)-times continuously differentiable in [0, T], and
lo(H;—H,;)|Z6>0 (i]).
Then, setting J,=d/dt+H,(t)A* we have for constants C and C' and
€ Cl21(D2ck-15)

5) (,) means the inner product in L*(R>).
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Zi HJ‘ll.... Tp- 1u’||2

,,,,,

2.8 ,
2.8) @l

di p 2
WA U E
where J,,- -+, J;,_, run all permutations from J,,---, J,.
Proof is essentially the same with that of Lemma 4 in [3].
Lemma 4. Let H(t) (1=1,---,k) be the operators of Lemma 8.
Suppose for each H(t) there exists an operator H(t) which satisfies
the assumptions of Lemma 2 and
29) |(HML—A+V=T ae)HXO)u|P=C(| Aul*+][ul) (wed,)
for 3ome real valued function at)eClr. Then, for the operator
A=J e - o, (J;=d/dt+ H, A% 'L'=1, coeo k) and weCl (Dy) such as
a7 At u(0)=d’ " /dt’ *u(h)=0 (j 1,-.-, k), we get

(2.10) fhgo"z"HAullzdth p- - f o
0

= irifmr1 i+5/25%—3/2

A’u d

¢+J/z_csfc-1/z

for a constant C,, sufficiently small h and every ngl
Proof. If we write J,=(d/dt+(1+v—1a)H)+(HA—(1+y—1a,)
HY), then, by the assumption of H} we can easily verify the inequality
(2.7) holds even for J;,. This means (2.10) holds for k=1. Next
estimating (Jyo::-oJ,—J; 0+ -0, )u by (2.4) we get
[[Jye e ol 2
>Cl Z ”Ji‘. eyl 2i+i/2$lc—l/2 WAJ'M/H )
If we apply (2. 7) to each J, (J;,0-- u), we have

U di

.....

-2n eco e 2 -
+Cah [90 12 wl|*dt Ci-w/zsk—lﬂf i

Estimating (4o« o, —J; oo A)u by (2.4) we apply Lemma 3
to the first term, and for the second term we use (2.10) replacing k&
by (k—1) as the assumption of the induction. Then, we get (2.10)
for sufficiently small A. Q.E.D.

3. Main theorems. Theorem 1. Let L be an operator defined
in (1.1). Suppose the associated polynomial L(t, x, 2, &) can be written
as

(81) Lit,2, 4 =1nl7|)=[1G+A+V=Ta()alt, z 1) (1%0)
where a.(t) (eCh ) and 4, (t, %, ) (€CZs,y5) By Jor 730) are all real
valued functions, and |2, (t, x,7)|=06>0 and

|(L+v =1 @) o,y ,7) —(L4+4 —1a (8) A, ((¢,2,7) | 25> 0 (i5) for 0.
Then, we have for a constant C

32 [ o LulratzC - mas- ﬂf;o
0

i/m+|a: ml tS1/2m

i

ai+[a| 2

iaoc
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Sfor sufficiently small h and every n=1, where o=1+h 't and
ueCH 11(Dsn) such as o7-fot’u(0)=0""ot’‘u(h)=0 (j=1,---, m).
Proof. By the discussion of the previous section we can write
L(t, @, 4, V=1 &) =] G+ A+ =T a (&) (8, 7, ER)rV™).
Now, we consider operajtors H, and P, of class C* with o(H,)
=14+V=1a,)(% ,(t, , eR*) and V2, (¢, %, ER"T) respectively, and con-
sider an operator /A defined by /1( Y=7(£)Y*™, Then, if we set H)=AP*P 4,
using Lemma 1 fully we can verify each pair H,; and H satisfies the
conditions of Lemma 4. Hence, setting J,=d/dt+ H,A* (i=1,.--,m)
we get (2.10) as k=m.
Consequently, estimating commutators we have

3.3) f ‘o LulPdt=C, S hoEmeo f"w
0 i+j/2=rSm—1/2 J
AS ha'r'a/méhj,,.j/m+1 (Oéaéj) we have haHAau”zéthAju” +”'MH2, and
9 = a2l (&) 2 deg 2mlam|\2 | 7} 2
| o ‘f"f 1) dé‘=f<K(E) | (E) |2 de

éczf(,rm]a:mlﬂm)z!a(é)|2d$=02HAZmla:mlu”2.
Hence, by (8.3) we have for sufficiently small »

h
ng_Z"HLqudths 2 h—z(m—r)f ¢—2n
A itmlaim|=rSm—1/2 .

Replacing = by mr we get (3.2).

Theorem 2. Let L be an operator which satisfies the conditions
of Theorem 1.

Suppose u=u(t, ) belongs to LA(R*) with t as a parameter and

v 1/2
exp (~n(@)ut, D Cn(®un) (r®)={1+3 23} ").
Then, if u satisfies a differential imequality
(3.4) |Lut<C b

i/m+lamisi-12m| Ot'0X®

fa

2

gi+lel "
atiox”

2

and initial conditions
(8.5)

tf T =0 a=heem,

u vanishes identically in [0, T].

Proof. It is clear that |9'*'/ox"ry(x)|(|a:m|<1) are uniformly
bounded, hence if we set v=exp (—r,(x))u, v also satisfies the condition
(3.4) and (3.5).

Take (t)eCh rp such that y(t)=1 for 0=<t<h/2 and zero for
3/4h<t<h, and set w=+v. Then, we can apply the inequality (3.2)

to w and get

ai+]al 2

13 h
[omitwlratze, 5 pomewo [Tpo| S0
A 2/m+|aim|=251—1/2m J *
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As Lw=Lw in [0, /2], we use (3 4) for v and get
-2n 2
Cn?ﬂf ¢ H dt+ f o7 || Luw|* dt

2 Cl 2 h—2m(l r) H
i/m+|aim|=rS1-1/2m

tiax
ai+ la] z

atiox®

Hence, for sufficiently small fixed h we get
f ¢—2n ILw||2dt> Cl h 2mf SD_an'l)szt

h/2

As ¢ < (2/3)* for h/2Zt<h and ¢-2”g(3/4)2" for 0Zt<h/3, we get
<§>2nfh|lMv[]zdtg—th'2mfh/s||vl|2dt. Letting n—>o we get v=u=0
9 h/2 2 0

on [0, #/3]. Repeating this process we get u(t)=0 in [0, T']. Q.E.D.
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