# 97. On the Šilov Boundaries of Function Algebras 

By Junzo Wada<br>Department of Mathematics, Tokyo Woman's Christian College<br>(Comm. by Kinjirô Kunugi, M.J.A., Sept. 12, 1963)

Let $C(X)$ be the algebra of all complex-valued continuous functions on a compact Hausdorff space $X$. By a function algebra we mean a closed (by supremum norm) subalgebra in $C(X)$ containing constants and separating points of $X$. For $F \subset X$, let $f \mid F$ be the restriction of the function $f$ to $F$ and $A \mid F=\{f \mid F ; f \in A\}$. We easily see that for any closed subset $F$ containing the Šilov boundary $\partial A$ of $A$ (cf. [1], [6]), $A \mid F$ is closed in $C(F)$. Conversely, it is natural to raise the following question: Let $F_{0}$ be a closed subset in $X$ and let $A \mid F$ be closed in $C(F)$ for any closed subset $F$ containing $F_{0}$. Then, does $F_{0}$ contain $\partial A$ ? The main purpose of this note is to answer the question under certain conditions (Theorems 1 and 2). The proof of Theorem 1 is a modification of that of Glicksberg's theorem (cf. [3]) and we obtain the Glicksberg's theorem as a corollary.

Let $A$ be a function algebra on $X$. Then there is a unique minimal closed subset $E$ of $X$ such that any continuous function zero on $E$ is in $A$. This closed subset $E$ is called the essential set of $A$. $A$ is an essential algebra if the essential set of $A$ is $X$ (cf. [2]). A function algebra $A$ is said to be an antisymmetric algebra (or an analytic algebra) if any real-valued function in $A$ is always constant (or any function in $A$ vanishing on a non-empty open set in $X$ is always identically zero) (cf. [4]). An analytic algebra is antisymmetric and an antisymmetric algebra is an essential algebra (cf. [4]).

Our main theorem is the following.
Theorem 1. Let $A$ be an essential algebra and let $F_{0}$ be a closed subset in $X$. If $A \mid F$ is closed in $C(F)$ for any closed subset $F$ containing $F_{0}$, then $F_{0}$ contains the Silov boundary $\partial A$ of $A .^{*)}$

Proof. We set first $F_{1}=\left\{y\left|y \in X,|f(y)| \leqq \sup _{x \in F_{0}}\right| f(x) \mid\right.$ for any $\left.f \in A\right\}$. Then we see that $F_{1}$ is a closed set in $X$ containing $F_{0}$. If $F_{1}=X$, then $\sup _{x \in F_{0}}|f(x)|=\sup _{x \in F_{1}}|f(x)|=\sup _{x \in X}|f(x)|$ for any $f \in A$, so $F_{0} \supset \partial A$. Therefore, in order to prove the theorem we need only to show that $F_{1}=X$. Suppose the contrary: $X \neq F_{1}$. We can show first that there is a function $f \in A$ such that $f(x)=1$ on $P$ and $f(x)=0$ on $Q$ for any closed set $P$ and for any closed set $Q$ with $Q \supset F_{1}, P \frown Q=O$. For, let $p, q$

[^0]be two distinct points with $p, q \notin F_{1}$. Since $p \notin F_{1}$, there is a $g \in A$ such that $1=g(p)>\sup _{x \in F_{1}}|g(x)|$, so there is a $g_{1} \in A$ such that $g_{1}(p)=1$ and $g_{1}(x)=0$ for any $x \in F_{1}$ since $A \mid F_{1} \smile(p)$ is closed in $C\left(F_{1} \smile(p)\right)$. Thus we have a function $g_{2} \in A$ such that $g_{2}(p)=1$ and $g_{2}(x)=0$ on $F_{1} \smile(q)$. Therefore, by the similar method as Glicksberg ([3], p. 159) we obtain a function $f \in A$ such that $f(x)=1$ on $P$ and $f(x)=0$ on $Q$ with $Q \supset F_{1}$, $P \frown Q=O$.

Now, Katznelson has recently introduced the notion of boundedness of the algebra $A$ at a point in $X$ (cf. [5] and [3]). We have then the following lemmas:

Lemma 1. Let $V_{1}$ and $V_{2}$ be open in $X-F_{1}$, and let $A$ be bounded on each $V_{i}$. Then $A$ is bounded on every closed subset $F$ of $V_{1} \smile V_{2}$.

Lemma 2. If $F$ is a closed set in $X-F_{1}$ and $A$ is bounded at each $x$ in $F$, then there is an open set $V \supset F$ on which $A$ is bounded.

Lemma 3. There are at most finitely many $x$ in $X-F_{1}$ where $A$ is not bounded.

These lemmas can be proved from the existence of a function $f \in A$ such that $f(x)=1$ on $P$ and $f(x)=0$ on $Q$ with $Q \supset F_{1}, P \frown Q=O$ (by the similar method as [3], Lemmas 1,2, and 3).

To continue the proof of our theorem, let $M$ be the finite set of all points in $X-F_{1}$ where $A$ is not bounded. Put $D=F_{1} \smile M$. If $D=X$, then $M=X-F_{1}$ is open and finite, so any point of $M$ is an isolated point. We see easily that an isolated point is bounded, so $D \neq X$. Since $A$ is an essential algebra, there is a continuous function $f_{0}$ such that $f_{0} \notin A$ and $f_{0}(x)=0$ for any $x \in D$. Let $\mu$ be a complexvalued measure such that $\mu\left(f_{0}\right)=1$ and $\mu(f)=0$ for any $f \in A$. We shall next prove that $\mu(P)=0$ for any closed set $P$ with $P \frown D=O$. Let $U_{0}$ be an open set with $X-P \supset \bar{U}_{0} \supset U_{0} \supset D$. For any positive number $\varepsilon$, we can find an open set $V \supset P$ with $|\mu|(V-P)<\varepsilon, V \frown U_{0}=O$, where $|\mu|$ denotes the total variation of $\mu$. Set $H=X-U_{0}$. By Lemma 2 $A$ is bounded on a neighborhood of $H$; there is a constant $c_{H}$ for which, whenever $K$ is closed and $K \subset H$, each idempotent in the quotient algebra $A / k K$ has norm $<c_{H}$, where $k K$ denotes the set $\{f \in A: f(K)=0\}$ (cf. [3], [5]). Since $X-V \supset D$, there is a function $f \in A$ such that $f=1$ on $P$ and $f=0$ on $X-V$. If we set $K=P \smile(H-V)$, the above function $f$ is an idempotent in $A / k K$. Therefore, there is an $h_{1} \in A$ such that $h_{1}(x)=1$ on $P, h_{1}(x)=0$ on $H-V$ and $\left\|h_{1}\right\|<c_{H}$. And we have finally the following function $h: h \in A, h(x)=1$ on $P, h(x)=0$ on $X-V$ and $\|h\|<m$ ( $m$ is a positive number which is independent of $V$ and so, of $\varepsilon$ ). In fact, $h=h_{1} h_{0}$ is a desired one, if $h_{0}$ denotes a fixed function $\in A$ such that $h_{0}(x)=1$ on $P$ and $h_{0}(x)=0$ on $\bar{U}_{0}$.

Thus,

$$
0=\int_{X} h d \mu=\int_{X-V} h d \mu+\int_{V-P} h d \mu+\int_{P} h d \mu
$$

and

$$
\left|\int_{V-P} h d \mu\right| \leqq m|\mu|(V-P)<m \varepsilon, \int_{X-V} h d \mu=0
$$

so

$$
|\mu(P)|=\left|\int_{P} h d \mu\right|<m \varepsilon .
$$

Since $\varepsilon$ is arbitrary, $\mu(P)=0$, that is, $\mu(P)=0$ for any closed subset $P$ in $X-D$. Since the function $f_{0}$ has the properties that $\mu\left(f_{0}\right)=1$ and $f_{0}(x)=0$ on $D$, so $1=\int_{X} f_{0}(x) d \mu=\int_{X-D} f_{0}(x) d \mu$ : But $\int_{X \rightarrow D} f_{0}(x) d \mu=0$, since $\mu(P)=0$ for any closed subset $P$ in $X-D$. This contradiction shows that $F_{0} \supset \partial A$.

Remark. (1) In the Theorem 1, the condition of essentiality of $A$ is necessary. Let $A_{1}$ be an function algebra on a compact Hausdorff space $Y$ and let $C(Z)$ be the algebra of all complex-valued continuous functions on a compact Hausdorff space $Z$. Let $X=Y \smile Z$ and let $Y$ and $Z$ be both open in $X$ and $Y \frown Z=0$. If we set $A=A_{1} \oplus C(Z)$ $=\left\{f \in C(X): f\right.$ equals some $f_{1} \in A_{1}$ on $Y$ and equals some $f_{2} \in C(Z)$ on $\left.Z\right\}$, $A$ is not an essential algebra. We have easily that $\partial A \supset Z$. Let $F_{1}$ be a closed set in $X$ with $F_{1} \subset Z, F_{1} \neq Z$. If we set $F_{0}=Y \smile F_{1}$, we see that for any closed subset $F \supset F_{0}, A \mid F$ is closed in $C(F)$. But $F_{0} \not \partial \partial A$ since $F_{0} \frown Z=F_{1}$.
(2) We consider the following problem in place of Theorem 1: Let $A$ be an essential algebra and let $F_{0}$ be a closed subset in $X$ having the non-empty interior. Let $A \mid F_{0}$ be closed in $C\left(F_{0}\right)$. Then, does $F_{0}$ contain $\partial A$ ? If $A$ is analytic, we can easily prove that $F_{0} \supset \partial A$ under the above hypothesis. But, if $A$ is essential (or antisymmetric), the conclusion is negative. For example, let $X$ be the set consisting of the unit circle and the origin in the unit disc and let $A$ be the function algebra of the restriction on $X$ of the algebra $A_{0}$, where $A_{0}$ denotes the set of all continuous function on the unit disc analytic on the open unit disc. If we put the origin as $F_{0}$, $F_{0} \not \supset \partial A$.

By Theorem 1, we have
Theorem 2. Let $A$ be an arbitrary function algebra and let $F_{0}$ be a closed subset in $X$ which is contained in the essential set $E$ of A. If $A \mid F$ is closed in $C(F)$ for any closed subset $F$ containing $F_{0}$, then $\partial A \frown E$ is non-empty and $F_{0} \supset \partial A \frown E$.

Proof. By hypothesis, the function algebra $B=A \mid E$ has the following properties: $B$ is an essential algebra and $B \mid F$ is closed in $C(F)$ for any closed $F$ in $E$ containing $F_{0}$. By Theorem 1, $F_{0} \supset \partial B$. But $\partial B \supset \partial A \frown E$, since $\partial A \ni x$ if and only if for any neighborhood $U$ of $x$, there is an $f \in A$ such that $U \supset\{y|y \in X,|f(y)|=\|f\|\}$ (cf. [1]).

Therefore, $F_{0} \supset \partial B \supset \partial A \frown E$. We show finally that $\partial A \frown E \neq O$. If $\partial A \frown E=0$, there is a function $f \in A$ such that $f(x)=0$ on $E$ and $f(x)=1$ on $\partial A$. If we set $g=1-f$, then $g(x)=0$ on $\partial A$ and $g(x) \neq 0$. This is a contradiction, so $\partial A \frown E \neq O$.

From this theorem we have
Corollary (Glicksberg). Let $A$ be an arbitrary function algebra. If $A \mid F$ is closed in $C(F)$ for any closed set $F$ in $X$, then $A=C(X)$.

Proof. If $A \neq C(X)$, then the essential set $E$ has at least two points, say $p, q$. By hypothesis, $A \mid F$ is closed in $C(F)$ for any closed $F \ni p$ and $A \mid F$ is closed in $C(F)$ for any closed $F \ni q$. By Theorem 2, $(p)=\partial A \frown E=(q)$. This contradiction shows that $A=C(X)$.

## References

[1] R. Arens and I. M. Singer: Function values as boundary integral, Proc. Amer. Math. Soc., 5, 735-745 (1954).
[2] H. S. Bear: Complex function algebras, Trans. Amer. Math. Soc., 90, 383-393 (1959).
[3] I. Glicksberg: Function algebras with closed restrictions, Proc. Amer. Math. Soc., 14, 158-161 (1963).
[4] K. Hoffman and I. M. Singer: Maximal algebras of continuous functions, Acta Math., 103, 218-241 (1960).
[5] Y. Katznelson: A characterization of the algebra of all continuous functions on a compact Hausdorff space, Bull. Amer. Math. Soc., 66, 313-315 (1960).
[6] L. H. Loomis: Abstract Harmonic Analysis, New York (1953).


[^0]:    *) After this paper had been accepted for publication, Prof. I. Glicksberg informed me that this theorem can be also proved by direct use of his theorem [3].

