137. On Algebraic Varieties Uniformizable by Bounded Domains

By Tetsuji Shioda

Department of Mathematics, University of Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Nov. 12, 1963)

Let D be a bounded domain in \mathbb{C}^n and Γ a discontinuous group of analytic automorphisms of D. We suppose throughout this paper (unless otherwise mentioned) that Γ satisfies the following two conditions:

No element of Γ except the identity has a fixed point in D.
V=Γ\D is compact.

Then V is, as is well-known, analytically equivalent to a non-singular projective algebraic variety. (Cf. [2], [5] Theorem 3 or [6] Theorem 6.)

We consider in the following algebraic varieties V, expressible in the form $\Gamma \setminus D$, where D and Γ are as described above.

 $\mathfrak{A}(V)$ will denote the group of all analytic automorphisms of V, K(V) the field of all meromorphic functions on V, and $\mathfrak{A}(K(V))$ the group of all automorphisms of K(V) over C.

Igusa [5] proved, in case D is a hypersphere in C^n :

$$|z_1|^2 + \cdots + |z_n|^2 < 1$$
,

that (a) V is a minimal model, and (b) $\mathfrak{A}(K(V))$ is a finite group.

We shall show that (i) (a) holds in general (for any bounded domain D), (ii) $\mathfrak{A}(V)$ is finite, if D is simply-connected, and (iii) $\mathfrak{A}(V) \cong \mathfrak{A}(K(V))$. (ii), (iii) imply of course (b). To prove (i) and (iii), we can utilize the idea of [5] (Theorems 6 and 7, p. 675), and the result (ii) can be found in [3], [7]. However we shall also give a proof of (ii) for completeness' sake.

It is well-known that any compact Riemann surface V of genus ≥ 2 can be uniformized by D = the unit disc of the complex plane. In this case, the fact that $\mathfrak{A}(V)$ is finite is a classical Schwarz-Klein theorem, and it is also known that $\mathfrak{A}(V) \cong \mathfrak{A}(K(V))$. Thus our results contain generalizations of these classical facts.

The author wishes to express his sincere gratitude to Professors S. Iyanaga and J. Igusa for their valuable advices.

§1. A complex manifold M imbedded in a projective space will be called "minimal" if any meromorphic mapping from any complex manifold U into M is necessarily holomorphic. Here a meromorphic mapping is defined invariantly using the inhomogeneous coordinates of M and any local coordinates of U. (Cf. [5], p. 674.)

Theorem 1. Notations being as above, the variety $V = \Gamma \setminus D$ is

minimal.

Proof. Let F be a meromorphic mapping from U^m (a complex manifold of dimension m) into V. We shall show that F is holomorphic. We may assume that U is a connected and simply-connected neighborhood of the origin of C^m . The "fundamental locus" W of F (i.e. the set of points of U, at which F is not holomorphic,) is an analytic set of dimension $\leq m-2$, since V is imbedded in a projective space P^N and W can be considered as common zeros of the functions on U representing the homogeneous coordinates of V. Therefore U-W is connected and simply-connected. The restriction of F to U-W is a holomorphic mapping from U-W into V.

Let z_0 be a point of U-W and let P_0 be a point of the covering manifold (D, π) of V lying over $F(z_0)$. (π means the natural projection $D \rightarrow V = \Gamma \setminus D$.) We show that we can define a (single-valued) holomorphic mapping F^* from U-W into D such that $F^*(z_0) = P_0$ and $\pi \circ F^* = F$.

For any point z_1 of U-W, we connect z_0 and z_1 by a continuous curve z_t $(0 \le t \le 1)$ in U-W. Over the curve $F(z_t)$ $(0 \le t \le 1)$ in V, there lies a unique curve P_t $(0 \le t \le 1)$ in D starting from P_0 . We define F^* by $F^*(z_1)=P_1$. Since U-W is simply-connected, this definition is independent of curves z_t connecting z_0 and z_1 , and F^* gives a single-valued mapping with desired properties.

Now any component F_{α}^* of F^* is a bounded holomorphic function on U-W ($\alpha=1,\dots,n$). By a theorem of Hartogs F_{α}^* must be holomorphic throughout U. Consequently $F=\pi\circ F^*$ is holomorphic throughout U. Q.E.D.

Remark. Also when the condition (2) for Γ is not satisfied, $V=\Gamma \setminus D$ is a minimal complex manifold, if V has a projectiveembeddable compactification \overline{V} , as is clear from the above proof. But we do not know whether \overline{V} itself is minimal or not, when V is not compact. In fact we know nothing about the universal covering of \overline{V} , even when \overline{V} is non-singular.

§2. Theorem 2. If D is simply-connected, then $\mathfrak{A}(V)$ is a finite group.

Proof. First every analytic automorphism of V is induced by an analytic automorphism of D, since D is the universal covering of V. Conversely an analytic automorphism of D induces that of V if and only if it belongs to the normalizer $N(\Gamma)$ of Γ in $\mathfrak{A}(D)$. Hence (*) $\mathfrak{A}(V) \cong N(\Gamma)/\Gamma$,

the isomorphic mapping being given in the natural way. This isomorphism gives also an isomorphism between topological groups $\mathfrak{A}(V)$ and $N(\Gamma)/\Gamma$, the compact-uniform topology being introduced into

618

 $\mathfrak{A}(V)$ and $N(\Gamma)$, and the quotient topology into $N(\Gamma)/\Gamma$. By a theorem of Bochner-Montgomery, the topological group $\mathfrak{A}(V)$ becomes a complex Lie group. ([1], Theorem 1.) Since Γ is discrete in $N(\Gamma)$, we can consider $N(\Gamma)$ as complex Lie group by the isomorphism (*). Thus the complex Lie group $N(\Gamma)$ acts on the bounded domain D, and so $N(\Gamma)$ is discrete. (Cf. [1], Theorem 2.) Consequently $N(\Gamma)$ is a discontinuous group, and

 $#\mathfrak{A}(V) = [N(\Gamma): \Gamma] = v(\Gamma)/v(N(\Gamma)) < +\infty$

where $v(\Gamma)$ denotes the invariant volume of the fundamental domain for Γ in D, and $v(N(\Gamma))$ has the similar meaning for $N(\Gamma)$. Q.E.D.

Remark. When D is a symmetric bounded domain, and $N(\Gamma)$ satisfies the condition (1) for Γ , then we have

 $#\mathfrak{A}(V) = \chi(\Gamma \setminus D): \ \chi(N(\Gamma) \setminus D),$

where $\chi(V)$ denotes the Euler-Poincaré characteristic of V. This follows from the above proof and the "proportionality relation" of Hirzebruch. ([4], Satz 3 and 4.)

§3. Theorem 3. $\mathfrak{A}(K(V))$ is isomorphic to $\mathfrak{A}(V)$.

Proof. For an arbitrary element σ of $\mathfrak{A}(V)$, we define $\overline{\sigma} \in \mathfrak{A}(K(V))$ by $\overline{\sigma}(f) = f \circ \sigma^{-1}$, f being any function in K(V). $\sigma \rightarrow \overline{\sigma}$ is clearly an injective homomorphism. We show that this is surjective.

Let φ be any element of $\mathfrak{A}(K(V))$, and let (x_0, x_1, \dots, x_N) be a generic point of $V \subset \mathbf{P}^N$. Then $K(V) = \mathbf{C}(x_1/x_0, \dots, x_N/x_0)$. Define σ by $(1, x_1/x_0, \dots, x_N/x_0) \rightarrow (1, \varphi(x_1/x_0), \dots, \varphi(x_N/x_0)).$

Then σ is a birational mapping from V to itself. Since V is minimal by Theorem 1, a birational mapping is necessarily biregular, i.e. $\sigma \in \mathfrak{A}(V)$, and it is easy to see $\overline{\sigma^{-1}} = \varphi$. Q.E.D.

Remark. This proof is based only on the minimality of V. Corollary. If D is simply-connected, $\mathfrak{A}(K(V))$ is a finite group.

References

- S. Bochner and D. Montogomery: Groups on analytic manifolds, Ann. of Math., 48, 659-669 (1947).
- [2] H. Cartan: Quotient d'un espace analytique par un groupe d'automorphismes, Algebraic geometry and topology. A symposium in honor of Lefschetz, Princeton, 90-102 (1957).
- [3] N. S. Hawley: A theorem on compact complex manifolds, Ann. of Math., 52, 637-641 (1950).
- [4] F. Hirzebruch: Automorphen Formen und der Satz von Riemann-Roch, Symposium internacional de topologia algebraica, Mexico, 129-144 (1958).
- [5] J. Igusa: On the structure of a certain class of Kaeler varieties, Amer. J. Math., 76, 669-678 (1954).
- [6] K. Kodaira: On K\"ahler varieties of restricted type, Ann. of Math., 60, 28-48 (1954).
- [7] J. H. Sampson: A note on automorphic varieties, Proc. Nat. Acad. Sci. U.S.A., 38, 895-898 (1952).
- [8] A. Weil: Introduction à l'étude des variétés kählériennes, Paris (1957).