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(Comm. by Kinjir KUNUGI, M.J.A., Jan. 13, 1964)

1. It is one of the most important problem of the quantum
field theory that what kind of Hilbert (or linear) space we must
construct corresponding to the set of all physical states, i.e., in what
kind of space we must consider representation of the operator algebra
of physical observables.

As many authors 1-3 pointed out, the inequivalency of irre-
ducible representations of cannonical commutation relation (or of
similar operator algebra 4-7, causes the different types of field
theory. In addition to the inequivalency, the problem of orthogonal-
ity is another serious problem.

O. Miyatake 9, 10, and Van Hove 2 pointed out the problem
of the orthogonality as follows. Let Ho be the free Hamiltonian of
neutral scaler meson field interacting with the fixed point source.
Let H be the total Hamiltonian of the coupled system. Then the
Hilbert space H spanned by all eigenvectors of H is perpendicular
to the Hilbert space H0 spanned by all eigenvectors of H0. This
orthogonality deny the applicability of customary perturbation in
which a state of H is expanded by the complete orthonormal system
of H0.

Further we may well imagine that not only in the fixed source
model but also in the real field similar orthogonality relation would
hold, and we can imagine also well that the customary perturbative
methods would break down in the real field. K. 0. Friedrichs referred
these problem 1 and proposed that both spaces should be considered
as subspaces of a universal Hilbert space introduced by J. Von
Neumann _11.

In this article we consider about universality of this space (2)
and the relation to the customary occupation number representation
( 3) and investigate the new topology to obtain the new perturbative
method between orthogona! spaces (4-6).

2. In the quantum field theory one frequently constructs the
Hilbert spaces of state vectors in the following several ways.

(1) One assumes ttarniltonian of the system, and finds the
eigenvectors of Hamiltonian, then takes closure of the linear aggre-
gate of the eigenvectors (e.g. 2, 9, 10).

(2) One assumes the algebraic relations of operators which
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corresponds to the physical observables or so. Then one assumes
suitable Hilbert space which is a irreducible representation space of
these algebras (e.g. [4-7).

(3) One assumes the existence of a vector which corresponds
to the vacuum state, and assumes the dense subset of Hilbert space
is obtained by the iterated application of some field operators to the
vacuum vector [5, 8, 12.

The construction of H=II(R)H*) from the primary Hilbert spaces

H is another way. This time the construction can be done inde-
pendently from field operators, contrary to above three ways, i.e.,
we have only to assume the existence of the spectrum of single
particle and assign integer numbers to the element of spectrum. In
a mathematically rigorous way J. Von Neumann shows this method,
whose brief sketch is given in 13,9,10.

The space II(R)H has the following characters. (In this article
we assume that a makes a discrete spectrum.)

(1) So far as we admit that the state of field is a composed
system {f.} of the individual state f,, we may have to recognize that
all possible states are included in this space. (The name "universal
Hilbert space" by K. O. Friedrichs tells the real state of affairs.)
All Hilbert spaces constructed by ways of (1), (2), (3) will be contained
in the universal space. All initial ?/r and final states S?/r would naturally
be included in H, hence S-matrix also should be well defined operator
in this space.

(2) The principle of construction of the universal space from
the primary Hilbert spaces is simple and reasonable. That is to say,
the inner product between II(R)f. and II(R)g should be defined by
II(f, g} which is a natural extension of the scaler product II2=(f, g}
of many particle system deduced from (.f, g} of the single particle
system.

3. Let [9,1j=0,1,2...} be a complete orthonormal system of
the space H, such that 9, corresponds to the states n in [13.
Let Fa)--{9,a,)li--1, 2, 3,...}, then Fa,) defines and equivalent class

11 1",, where F, is a closed linear subspace spanned by

(i)-fl(i) for almost all i}. Let lIrm(R)H be an incomplete direct
product such that contains II(R)H,a,. Let H(Fa,) be a Hilbert
space defined in [3 and let H(F) be a direct sum of H(Fa,))for all
fl(i). Then we can see easily the following

Theorem 1. H(F(i))--llrm)(R)H
and

*) Notations and abbreviations in this article follow J. Von Neumann [Ii] and the
author [13].
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Proof. We can prove these properties directly frown Von Neumann’s
investigation 11. Inequality is proved by the following two examples.

Example 1. Let f---(9+9) for any integer i. Then H(R)f

is orthogonal to every H(Fa,)), i.e. II (R)f, -6 H(F) and eH (R) H.
Example 2. Let f,=X:=0c9, for any i where c=/e-,/n!, then

II(R)f, belongs to H (total)CH(universal) but neither belongs to
H0 (free) nor H(F).

4. Now the elimination of orthogonality is not attained, of
course, by mere introduction of the universal space. We must seek
the limiting process or topology r which connect the two (free and
total) subspaces of the universal space.

We desire this topology r has the following 4 properties:

(1) Among Hilbert spaces H(Fa(,)), the most frequently used
one is H(Fo)*=Ho (free) (Fock space). Hence we desire the closure
in r of H(Fo) has as wide region as possible, since its closure is also
the maximum region which can be attained by the limiting (or
perturbation) process from H(Fo).

(2) Topology r must be compatible with linear (algebraic)oper-
ation between states.

(3) It is preferable to avoid troublesome modification that r is
weaker than the ordinary topology by norm.

(4) Topology r will be preferable if the physical meaning of
limiting process in r is given or if it corresponds to the customary
limiting process in the calculation of quantum field theory.

5. We investigate here the topology which corresponds to the
customary cut-off process [13. Let G be the set of all finite linear
sum of c-sequence. Then G is dense subset of H. We introduce the
new topology in G.

In the previous article [13 we introduced the cut-off operator
P. At first sight it seems to be reasonable to introduce a new
topology using this operator P by a neighborhood system U,,(O0)
of a vector oeG:

But this topology is not satisfactory because of the ambiguities
of the cut-off process discussed in the previous paper [13.

Now there are two remedies for these ambiguities. One is to
apply cut-off operation always in the standard form which is de-
veloped by a system of fixed complete orthonormal set. The other
method is to regard a different expression as a different physical state.
The similar of the former types of cut-off process is done in custom-

*) F0 means Fc) such that 8(i)=0 [3].
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ary calculation with no attention either to ambiguities or to remedies
for them. In this article we investigate the former way. The latter
way will be discussed in the following paper [14.

Now one takes a fixed base e.g. [,] i-1, 2,..., fl- 0, 1, 2,...} as
in [13].

Let {.,} be a c-sequence. Further assume that H converges
to k e% Then we call //(R)2, is normalizable and call k ell (R)
standard monomial of a vector H(R)2.,.. We take the set of all
finite linear aggregate of normalizable vector with regard to given
complete orthonormal system [,}. We can easily see that is an
algebraic linear space. Now one can express any element q of by
a finite linear sum of standard monomial and then one arranges it
with respect to the independent basis vector [H(R)p.,} after the finite
steps of the following identifications:
1 kelI+k’e’ll-(ke+k’e’)H
2

We denote the obtained expression by q and call it standard poly-
nomial of q.

We introduce the topology r in the space 0 by the neighborhood

system U,,(q0)-{ql ]]q--0[[<}, where we denote the norm

of the cut-off maps P 13-] of standardized vector q of q by

and call it N-semi-norm, i.e,
Theorem 2. ) is a convex linear topological space in the

topology .
Proof. We can easily prove this theorem from the definition

of .
6. We compare here the topology with the ordinary norm in

l) and investigate the region of ).
For any monomial element q of ), we see easily that II qll--II

For polynomial element q such that q-=q where q is a standard
monomial, we see that the inequalities O.IIqll_<_[[q[[_<_Zllqll holds.

The 1st equality holds for 11]]4:0 as we see in Example 3 in
[13J. The 2nd equality holds as we see in the following

Example 3. Let --ffl-[-., ff--gr(R)gf, --g;(R)g;, where
[[F[[-[[,II--I[g:,.II-1 (in H or llT.--:(R)H), and gA. gr.. Then
we see that

Further, as we see in xample 5 in 18, here exists an elemen
qeH such that I111< , IIll=o.

With respect to the region of and , we have the following

Theorem 3. (1) ) is dense in UH(F,), (2) crosses with
H(F) where U means set-theoretical sum.
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Proof. (1) is trivial from definitions of and H(F). Example

5 13] shows that there exists -ceH(Fo)H(f’) and . The
other half of the 2nd proposition is seen from the following

Example 4. Let 9-9@9m 9@9m where
Then we see that though lira 9-0 in r, diverges in H(F) for

suitable {9}, i.e., {}e0 and H(F).
Let O(Fa,)- 0 H(Fac,). Then -- Ua(Fa,) and O(Fm is dense in

H(Fa.,). We denote OH(Fo) by (o). Then we have the following
diagram H(Fo) UaH(Fa) H(F) H

Example S. Let (2,5,2,5...) be a set of occupation number,
then the sequence of vectors which correspond occupation numbers
(2, 0, 0,...), (2, 5, 0, 0,...), (2, 5, 2, 0,...) converges in r. Hence (2, 5,

2,5...)cO(F0) though it belongs to H(F) 3 and is orthogonal to
g(r0).

Example 6. Let -HL@ (p+p)@(,+@). hen

the standard olynormial - for <m is

=1

where 2,..., 2 runs through all the permutations of numbers 1,2
admitting repetition, and +,..., is the permutation of numbers
1, 2 containing at least one number 2. Then for Nnm,

[[ --[[= (2/--2/)2-and the limit of this value is indefinite. Hence {}g. ({}H(F)
is also to be seen in Example 1.)

Example 7. Putting c-e-2/n, we consider

Since c satisfies 2] c] we see that e Similarly putting

--H_(2:=cn)@H @ we See that e. or modified/=N+I

vacuum state, however, does not belong to like in Example 1.
The author would like to thank Prof. K. Kunugi for his helpful

criticism and encouragement. The author would like to thank also
Prof. T. Imamura for his valuable discussions.

(This article is dedicated to Prof. K. Kunugi for the memory of
his 60th birthday.)
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