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1. Introduction. H.W. Ellis [2 has introduced the GM-integraI
descriptively whose indefinite integral is mean continuous. The GM-
integral is an extension of the CP-integral defined by J.C. BurkilI
[1. The aim of this paper is to define an integral of the Perron
type which is equivalent to the GM-integral. We call this integral
the mean continuous Perron integral or MP-integral.

In 2 we shall define the MP-integral and prove its fundamental.
properties. The equivalence between the GM-integral and the MP-
integral will be considered in 3. The proof is essentially based on
the method used by J. Ridder ([4, pp. 7-8).

2. The mean continuous Perron integral.
Definition 2.1 ([2, p. 114). If f(x) is general Denjoy integrable

on [a, b then we write
1 f(t)dt.M(fi a, b)- b------

If lim M(f, c, c+h)=f(c) then f(x) is termed mean continuous or
h-0

M-continuous at c.
Definition 2.2. A finite function f(x) is said to be AC on a set

E if to each positive number e, there exists a number >0 such
that

Z{f(b)--f(a)} > --for all finite non-overlapping sequence of intervals [(a, b)} with end
points on E and such that Z(b--a). There is a corresponding

definition of AC on E. If the set E is the sum of a countable
number of sets E on each of which f(x) is AC then f(x) is termed
ACG on E. Similarly we can define ACG on E. If f(x)is both
ACG and ACG on E then we say that f(x) is ACG on E.

Definition 2.3 ([2, p. 115). A finite function f(x) is said to be
(ACG) on E if E is the sum of a countable number of closed sets

E on each of which f(x) is AC. If "AC" is replaced by "AC",
then the corresponding definition of (ACG) is obtained. If f(x) is
both (ACG) and (ACG) on E then f(x) is termed (ACG) on E.

Definition 2.4. Let f(x) be defined on an interval [a, b_. The
function U(x) [L(x) is called upper [lower function of f(x)in
[a, b if
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U(a) 0 L(a) 0,
(ii) U(x) [_L(x) is M-continuous on a, b,
(iii) U(x) [_L(x) is (ACG) [(ACG) on [a, b,
(iv) ADU(x)>__f(x) a.e. [AD L(x)<=f(x) a.e..
Definition 2.5. If f(x) has upper and lower functions in [a, b

and inf U(b)-supL(b), then f(x) is termed integrable in the mean
continuous Perron sense or MP-integrable on [a,b. The common
value of the two bounds is called the definite MP-integral of f(x)
on [, b-I, and is denoted by (MP) f(t)dt.

Lemma 2.1 (2, p. 116). If f(x) is M-continuous and (ACG) on

[a,b-] and if ADf(x)>=O almost everywhere on [a,b then f(x) is
non-decreasing on [a, b.

The direct consequence of this lemma is the following theorem.
heorem 2.1. For any upper funetion U(x) and any lower fune-

tion L(x), the function U(x)--L(x) is non-deereasing on [a,b.
Theorem 2,.2. If f(x) is MP-integrable on [a, b then f(x) is

also so on a,. for a<<b.
Proof. For a given s>O, we ean find upper and lower funetions

U() and L(x) such that
0 <= U(b) L(b) < s.

It follows from Theorem 2.1 that U(x)--L(x)s for a x b, which
proves the theorem.

Definition 2.6. Let f(x) be an MP-integrable function on [a, b_.
Then we define the indefinite MP-integral of f(x) as

F(x)--(MP)ff(t)dt.

Theorem 2.3. For any upper function U(x) and any lower func-
tion L(x), U(x)--F(x) [F(x)--L(x) is non-decreasing on [a,b.

Proof. Let a<=x<x.<=b. Then U(x)--U(x) is an upper function
of f(x) in [x, x.. Hence

U(x) U(x) >= (MP ff
that is,

U(x.)- U(x) >= F(x)-- F(x)
which proves the theorem.

Theorem 2.4. The indefinite integral F(x) is M-continuous on

[a,b.
Proof. For a given n (n-l, 2,...) there exists an upper func-

tion U,(x) such that
0<= Un(x)--F(x)<l/n

Hence U(x)converges uniformly to F(x) on _a,b. Since U(x)is
M-continuous, the limit function F(x)is also M-continuous (1_, p. 319).
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Theorem 2.5. The indefinite MP-integral F(x) is approximately
differentiable almost everywhere and AD F(x)=f(x) a.e.

Proof. For a given 0 we can find an upper function U(x)
such that

U(b)--F(b)<.
We put R(x)--U(x)--F(x). Then R(x) is non-decreasing by Theorem
2.3, and therefore R’(x) is finite almost everywhere and is L-inte-
grable. Hence

(L) R’(t)gt <= R(b)-R(a)- U(b)-- F(b) < s.
We set

A(s)-{" AD F()<f(x)--s}, A--{x" AD U(x)<f(x)}
and

M={x
Then ]A]--0 and ]MI--b--a. If xA(s)--A then

AD F(x) < f(x) <= AD U(x) e.
Hence

An U(x)--AD F(x)
If xeM then R’(x)--AD U(x)--AD F(x). If we put B(s)--{x"
then it holds that x e(A(s)--A).M implies x eB(s). Since

s B(s) < (L) R’(t)dt< (L) R’(t)dt

we obtain

Hence

It follows from the relation

that

Hence

A(s) < s.

Ix" AD F(x)<f(x)}--Z{x" AD F(x)<f(x)--s/2}

Similarly we obtain

and therefore

]{x" AD F(x) (f(x)} =
AD F(x) >= f(x) a.e.

AD F(x) <= f(x) a.e.,

AD F(x)=f(x) a.e.

3. The relation between the MP-integral and the GM-integral.
Ellis [2 has defined the GM-integral in the Denjoy type as follows:

Definition 3.1. Let f(x) be a function defined in [a, bJ and
suppose there exists a function F(x) such that
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F(x) is M-continuous on a, bJ,
(ii) F(x) is (ACG) on [a, b,
(iii) ADF(x)--f(x) a.e.,

then f(x) is said to be GM-integrable on [a, b and write

(Gi)ff-- (t)dt-- F(b)--F(a).

Theorem 3.1. The MP-integral is equivalent to the GM-integral.
Proof. Suppose that f(x) is GM-integrable on [a,b. Then

there exists a function F(x) which is M-continuous, (ACG) and
ADF(x)--f(x) a.e. Hence the function F(x)--F(a) is an upper
function and at the same time a lower function of f(x) in [a, bJ.
Thus f(x) is MP-integrable on [a, b_ and

(MP)ff(t)dt- F(b)-F(a)- (GM)ff(t)dt.

Next we shall show that the GM-integral includes the MP-inte-
gral. Suppose that f(x) is MP-integrable on [a,b and that

F(x)--(MP)ff(t)dt.
Then F(x) is M-continuous on [a, b and ADF(x)--f(x) a.e. by
Theorems 2.4 and 2.5. We must show that F(x) is (ACG) on [a, b.
Since f(x) is MP-integrable, there exists a sequence of upper
functions {U(x)} and a sequence of lower functions {L(x)} such
that
( 1 lim U(b)-- F(b)-- lim L(b).
Since U(x)--F(x) and F(x)--L(x) are non-decreasing by Theorem 2.3
it holds that
( 2 lim U(x)--F(x)-lim L(x) for a<=x<__b.
The interval [a, b is expressible as the sum of a countable number
of closed sets E such that any U is AC on any E and at the same
time any L is AC on any E. It is sufficient to prove that F(x) is
AC on E. For this purpose we shall show that F(x) is both AC
and AC on E.

Suppose that F(x) is not AC on E. Then there exists an

and a finite sequence of non-overlapping intervals {(a, b,)} with end
points on E such that for any small

but it holds
3 ) Z{F(b)--F(a)} <__

Since we can find a natural number p such that

U(b) F(b) <_ l/2 ,
and U(x)--F(x) is non-decreasing on a, bJ, we have
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4 v{ U(b)- U(a)}-- V{F(b)- F(a)}
v U(b) F(b)}-- Up(a)- F(a)}J

"< U(b)- F(b) <= 1/2. e.
It follows from (3) and (4) that

v{ U(b)- U(a)} =< Z{F(b)- F(a)}+ 1/2.
__< 1/2..

This contradicts the fact that U(x) is AC on E.
AC on Ek.

Similarly we can prove that F(x) is AC on E.
(ACG) on a, b. This completes the proof.

Hence F(x) is

Thus F(x) is
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