38. The Mean Continuous Perron Integral

By Yôto KUBOTA

Hokkaido Gakugei University (Comm. by Kinjirô KUNUGI, M.J.A., March 12, 1964)

1. Introduction. H. W. Ellis [2] has introduced the GM-integral descriptively whose indefinite integral is mean continuous. The GM-integral is an extension of the CP-integral defined by J. C. Burkill [1]. The aim of this paper is to define an integral of the Perron type which is equivalent to the GM-integral. We call this integral the mean continuous Perron integral or MP-integral.

In §2 we shall define the MP-integral and prove its fundamental properties. The equivalence between the GM-integral and the MP-integral will be considered in §3. The proof is essentially based on the method used by J. Ridder ([4], pp. 7-8).

2. The mean continuous Perron integral.

Definition 2.1 ([2], p. 114). If f(x) is general Denjoy integrable on [a, b] then we write

$$M(f, a, b) = \frac{1}{b-a} \int_a^b f(t) dt.$$

If $\lim_{h\to 0} M(f, c, c+h) = f(c)$ then f(x) is termed mean continuous or *M*-continuous at *c*.

Definition 2.2. A finite function f(x) is said to be <u>AC</u> on a set *E* if to each positive number ε , there exists a number $\delta > 0$ such that

 $\Sigma\{f(b_k)-f(a_k)\}>-\varepsilon$

for all finite non-overlapping sequence of intervals $\{(a_k, b_k)\}$ with end points on E and such that $\Sigma(b_k - a_k) < \delta$. There is a corresponding definition of \overline{AC} on E. If the set E is the sum of a countable number of sets E_k on each of which f(x) is \underline{AC} then f(x) is termed \underline{ACG} on E. Similarly we can define \overline{ACG} on E. If f(x) is both \overline{ACG} and \overline{ACG} on E then we say that f(x) is ACG on E.

Definition 2.3 ([2], p. 115). A finite function f(x) is said to be (\underline{ACG}) on E if E is the sum of a countable number of closed sets $\overline{E_k}$ on each of which f(x) is \underline{AC} . If " \underline{AC} " is replaced by " \overline{AC} ", then the corresponding definition of (\overline{ACG}) is obtained. If f(x) is both (\underline{ACG}) and (\overline{ACG}) on E then f(x) is termed (\underline{ACG}) on E.

Definition 2.4. Let f(x) be defined on an interval [a, b]. The function U(x) [L(x)] is called upper [lower] function of f(x) in [a, b] if

- (i) U(a)=0 [L(a)=0],
- (ii) U(x) [L(x)] is *M*-continuous on [a, b],
- (iii) U(x) [L(x)] is $(ACG) [(\overline{ACG})]$ on [a, b],
- (iv) $AD U(x) \ge f(x)$ a.e. $[AD L(x) \le f(x)$ a.e.].

Definition 2.5. If f(x) has upper and lower functions in [a, b]and $\inf U(b) = \sup L(b)$, then f(x) is termed integrable in the mean continuous Perron sense or *MP*-integrable on [a, b]. The common value of the two bounds is called the definite *MP*-integral of f(x)on [a, b], and is denoted by $(MP) \int_{a}^{b} f(t) dt$.

Lemma 2.1 ([2], p. 116). If f(x) is *M*-continuous and (<u>ACG</u>) on [a, b] and if $AD f(x) \ge 0$ almost everywhere on [a, b] then f(x) is non-decreasing on [a, b].

The direct consequence of this lemma is the following theorem. Theorem 2.1. For any upper function U(x) and any lower function L(x), the function U(x)-L(x) is non-decreasing on [a, b].

Theorem 2.2. If f(x) is *MP*-integrable on [a, b] then f(x) is also so on [a, x] for a < x < b.

Proof. For a given $\varepsilon > 0$, we can find upper and lower functions U(x) and L(x) such that

 $0 \leq U(b) - L(b) < \varepsilon.$

It follows from Theorem 2.1 that $U(x) - L(x) < \varepsilon$ for a < x < b, which proves the theorem.

Definition 2.6. Let f(x) be an *MP*-integrable function on [a, b]. Then we define the indefinite *MP*-integral of f(x) as

$$F(x) = (MP) \int_{a}^{x} f(t) dt.$$

Theorem 2.3. For any upper function U(x) and any lower function L(x), U(x)-F(x) [F(x)-L(x)] is non-decreasing on [a, b].

Proof. Let $a \leq x_1 < x_2 \leq b$. Then $U(x) - U(x_1)$ is an upper function of f(x) in $[x_1, x_2]$. Hence

$$U(x_2) - U(x_1) \ge (MP) \int_{x_1}^{x_2} f(t) dt$$

that is,

$$U(x_2) - U(x_1) \ge F(x_2) - F(x_1)$$

which proves the theorem.

Theorem 2.4. The indefinite integral F(x) is *M*-continuous on [a, b].

Proof. For a given n $(n=1, 2, \dots)$ there exists an upper function $U_n(x)$ such that

 $0 \leq U_n(x) - F(x) < 1/n \qquad (a \leq x \leq b).$

Hence $U_n(x)$ converges uniformly to F(x) on [a, b]. Since $U_n(x)$ is *M*-continuous, the limit function F(x) is also *M*-continuous ([1], p. 319).

172

Theorem 2.5. The indefinite *MP*-integral F(x) is approximately differentiable almost everywhere and AD F(x) = f(x) a.e.

Proof. For a given $\varepsilon > 0$ we can find an upper function U(x) such that

$$U(b) - F(b) < \varepsilon^2.$$

We put R(x) = U(x) - F(x). Then R(x) is non-decreasing by Theorem 2.3, and therefore R'(x) is finite almost everywhere and is L-integrable. Hence

$$(L)\int_{a}^{b}R'(t)dt \leq R(b) - R(a) = U(b) - F(b) < \varepsilon^{2}.$$

We set

$$A(\varepsilon) = \{x : \underline{AD} \ F(x) < f(x) - \varepsilon\}, \quad A = \{x : AD \ U(x) < f(x)\}$$

and

No. 3]

$$M = \{x : -\infty < R'(x) < +\infty\}.$$

Then |A| = 0 and |M| = b-a. If $x \in A(\varepsilon) - A$ then $AD F(x) < f(x) - \varepsilon \le AD U(x) - \varepsilon$.

Hence

$$AD U(x) - AD F(x) > \varepsilon$$

If $x \in M$ then $R'(x) = AD \ U(x) - AD \ F'(x)$. If we put $B(\varepsilon) = \{x : R'(x) > \varepsilon\}$ then it holds that $x \in (A(\varepsilon) - A) \cdot M$ implies $x \in B(\varepsilon)$. Since

$$\varepsilon |B(\varepsilon)| \leq (L) \int_{B(\varepsilon)} R'(t) dt \leq (L) \int_{a}^{b} R'(t) dt$$

we obtain

$$|B(arepsilon)|\!<\!arepsilon.$$

Hence

$$|A(\varepsilon)| < \varepsilon.$$

It follows from the relation

$$\{x: AD F(x) < f(x)\} = \Sigma\{x: AD F(x) < f(x) - \varepsilon/2^k\}$$

that

 $|\{x: AD F(x) < f(x)\}| \leq \Sigma \varepsilon/2^k = \varepsilon.$

Hence

$$AD F(x) \ge f(x)$$
 a.e

Similarly we obtain

$$AD F(x) \leq f(x)$$
 a.e.

and therefore

$$AD F(x) = f(x)$$
 a.e.

3. The relation between the MP-integral and the GM-integral.

Ellis [2] has defined the GM-integral in the Denjoy type as follows: Definition 3.1. Let f(x) be a function defined in [a, b] and suppose there exists a function F(x) such that

Y. KUBOTA

- (i) F(x) is *M*-continuous on [a, b],
- (ii) F(x) is (ACG) on [a, b],
- (iii) AD F(x) = f(x) a.e.,

then f(x) is said to be *GM*-integrable on [a, b] and write

$$(GM)\int_{a}^{b}f(t)dt=F(b)-F(a).$$

Theorem 3.1. The MP-integral is equivalent to the GM-integral.

Proof. Suppose that f(x) is *GM*-integrable on [a, b]. Then there exists a function F(x) which is *M*-continuous, (ACG) and AD F(x) = f(x) a.e. Hence the function F(x) - F(a) is an upper function and at the same time a lower function of f(x) in [a, b]. Thus f(x) is *MP*-integrable on [a, b] and

$$(MP)\int_{a}^{b}f(t)dt = F(b) - F(a) = (GM)\int_{a}^{b}f(t)dt.$$

Next we shall show that the GM-integral includes the MP-integral. Suppose that f(x) is MP-integrable on [a, b] and that

$$F(x) = (MP) \int_{a}^{x} f(t) dt.$$

Then F(x) is *M*-continuous on [a, b] and AD F(x) = f(x) a.e. by Theorems 2.4 and 2.5. We must show that F(x) is (ACG) on [a, b]. Since f(x) is *MP*-integrable, there exists a sequence of upper functions $\{U_k(x)\}$ and a sequence of lower functions $\{L_k(x)\}$ such that

$$(1) \qquad \qquad \lim U_k(b) = F(b) = \lim L_k(b).$$

Since U(x) - F(x) and F(x) - L(x) are non-decreasing by Theorem 2.3 it holds that

(2) $\lim U_k(x) = F(x) = \lim L_k(x) \quad \text{for } a \leq x \leq b.$

The interval [a, b] is expressible as the sum of a countable number of closed sets E_k such that any U_k is AC on any E_k and at the same time any L_k is AC on any E_k . It is sufficient to prove that F(x) is AC on E_k . For this purpose we shall show that F(x) is both \underline{AC} and \overline{AC} on E_k .

Suppose that F(x) is not <u>AC</u> on E_k . Then there exists an $\varepsilon > 0$ and a finite sequence of non-overlapping intervals $\{(a_{\nu}, b_{\nu})\}$ with end points on E_k such that for any small δ

$$\Sigma(b_{\nu}-a_{\nu}) < \delta$$

but it holds

(3) $\Sigma\{F(b_{\nu})-F(a_{\nu})\} \leq -\varepsilon.$

Since we can find a natural number p such that

$$U_p(b) - F(b) \leq 1/2 \cdot \varepsilon,$$

and $U_p(x) - F(x)$ is non-decreasing on [a, b], we have

Mean Continuous Perron Integral

$$\begin{aligned} (4) \qquad \qquad & \Sigma\{U_p(b_\nu) - U_p(a_\nu)\} - \Sigma\{F(b_\nu) - F(a_\nu)\} \\ & = \Sigma[\{U_p(b_\nu) - F(b_\nu)\} - \{U_p(a_\nu) - F(a_\nu)\}] \\ & \leq U_p(b) - F(b) \leq 1/2 \cdot \varepsilon. \end{aligned}$$

It follows from (3) and (4) that

$$\Sigma\{U_p(b_\nu) - U(a_\nu)\} \leq \Sigma\{F(b_\nu) - F(a_\nu)\} + 1/2 \cdot \varepsilon$$
$$\leq -1/2 \cdot \varepsilon.$$

This contradicts the fact that $U_p(x)$ is <u>AC</u> on E_k . Hence F(x) is <u>AC</u> on E_k .

Similarly we can prove that F(x) is <u>AC</u> on E_k . Thus F(x) is (ACG) on [a, b]. This completes the proof.

References

- J. C. Burkill: The Cesàro-Perron integrals. Proc. London Math. Soc., 34, 314-322 (1932).
- [2] H. W. Ellis: Mean continuous integrals. Canad. Jour. Math., 1, 113-124 (1949).
- [3] I. P. Natanson: Theory of Functions of a Real Variable. Constable (1960).
- [4] J. Ridder: Über approximativ stetige Denjoy-Integrale. Fund. Math., 21, 1-10 (1933).
- [5] S. Saks: Theory of the Integral. Warsaw (1937).

No. 3]