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37. On Completeness of Royden’s Algebra

By Michihiko KAWAMURA
Department of Mathematics, Shimane University
(Comm. by Kinjir6 KUNUGI, M.J.A., March 12, 1964)

Let R be a Riemann surface and M(R) be Royden’s algebra
associated with R, i.e. the totality of bounded continuous a.c.T.
functions® on R with finite Dirichlet integrals. We say that a
sequence {¢,} of functions in M(R) converges to a function ¢ in
C-topology if it converges uniformly on any compact subset of R.
If a sequence {¢,} is bounded and converges to ¢ in C-topology, then
we say that {¢,} converges to ¢ in B-topology. If the Dirichlet

integral f f d(e,—e) \*d(p,—¢) tends to zero, then we say that {¢,}

convergetho ¢ in D-topology. Finally a sequence {¢,} converges to
¢ in BD-topology, if it converges in B-topology and D-topology. Let
My(R) be the totality of functions in M(R) with compact supports
in R and M,(R) be the potential subalgebra of M(R), i.e. the closure
of My(R) in BD-topology. Let I'(R) be the totality of differentials
a of the first order on R with finite Dirichlet integrals. Then [I'(R)

is a Hilbert space with an inner product (a, f)= f f aN*B. Clearly

{af; feM(R)}CI'(R). The algebras M(R) and MA(I}B) are complete
with respect to BD-topology respectively. (cf. Lemma 1.5, p. 208 in
Nakai [3]). Moreover we have the following theorem.

Theorem 1. If ¢,e M(R) and if (1) ¢,—~>¢ in C-topology and ¢
is bounded, (2) the Dirichlet integral Dgy(e,) is bounded, then (3)
oe M(R), (4) de,—~d¢ weakly in I'(R).

Proof. Generally, a bounded subset of a Hilbert space is weakly
compact (ef. ch. 1, § 4 in Nagy [2]). Since {d¢,} is bounded in I"(R)
by condition (2), there exists a subsequence {d¢,} such that {d¢,}
converges to some acl'(R) weakly in I'(R). We shall show that
e M(R) and dp=a. Let z=x-+1y be a local parameter in R and let
G be a square domain: —1<xz<1, —1<y<1 in the coordinate neigh-
borhood of z. We put a=a(x, y)dz+b(z, y)dy in G and we take a

differential 8 such that f=¢dy in G and B=0 outside of G, where
¢ is in the class C* and its support is contained in G. Then we have

(@ p=[ [an*p=[ [apdody.

By integration by parts, we get

*  For the definition of a.c.T. functions, refer to A. Pfluger: Comment. Math.
Helvt., 33, 23-33 (1959).
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¢y, B)= f f do, N*f= f f <%¢>dxdy=— f f 90%%01%012/.

On the other hand
lim (dg,,, H)=(a, B)
Therefore

(o BV =T g o
fG [[agdsdy=(a, B)=lim (dg,,, §)=—1lim f [0 2L dudy.
Since {¢, } converges to ¢ uniformly in G, the last term of the above
is equal to — f,; f gag—zdxdy. Hence

f [ agdady = — f f go—g%dmdy.

The above equality holds for any function ¢ which is in the class
C> and its support is contained in G. Hence the partial derivative
dp

o of ¢ in the sense of the theory of distributions is equal to a

measurable function a(x, y). By Nikodym’s theorem (cf. Theorem 5,

p. 58 in Schwartz [8]), ¢(x, ¥) is absolutely continuous with respect

to  in —1<x<1 for almost all values of fixed ¥y in —1<y<1 and
dp

the partial derivative £ in the usual sense is equal to a(zx, y) for

almost all values of (x,%) in G. Similarly, ¢(x, y) is absolutely
continuous with respeet to ¥ in —1<y<1 for almost all values of

fixed 2 in —1<x<1 and _g% is equal to b(x, y) for almost all values

of (x,v) in G. Since ¢(x,y) is continuous and a(x,y) and b(x, y) are

locally square integrable, a(x, ¥) and b(x, y) and so %% and g—z are

all locally integrable. Hence ¢ is an a.c.T. function. On the other
hand, dp=ac'(R), i.e. Dgz(p)<+ . By condition (1), ¢ is bounded
and continuous. Hence ¢eM(R). Next, any subsequence of {d¢,}
contains a subsequence which converges weakly in I'(R). From the
above proof, this subsequence converges to de weakly in I'(R). Hence
{de,} itself converges to d¢ weakly in I'(R).

Corollary 1. M(R) is a normed ring with respect to the norm
llfllzsgplfl-l-«/DR(f) (Lemma 1.1, p. 208 in Nakai [3]).

Corollary 2. M(R) is complete with respect to the BD-topology
(Lemma 1.5, p. 208 in Nakai [3]).

Theorem 2. If ¢, e M,(R) and if (1) ¢,—~>¢ in C-topology and
¢ is bounded, (2) Dz(¢,) ts bounded, then (8) e M ,(R).

Proof. By Theorem 1, e M(R). Let {R,}n_, be a normal ex-
haustion of R such that R,—R, is an annulus. Let w(p) be a con-
tinuous function on R such that w(p)=0 on R, w(p) is harmonic

on R,—R, and w(p)=1 on R—R,. Since
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p=wo+(1—w)p
and clearly
(1—w)pe My(R)CM ,(R),
it is sufficient to prove that weeM,(R). Let u, be a continuous
function such that u,=0 on R, and u, is harmonic on R,—R, and
U,=v¥ on R—R,, where y=we. Then u,—u,,, is equal to zero
outside of R,,,—R, and u,,,, is harmonic in R,,,—R,. By Green’s
formula
D (Uy— U s py U1 p) = Uy — U, p) ¥ AUy, , ,= 0.

W Ry p— R
Hence

0=DR(um - um+p7 U + 1)) —__DR(umr um+p)_DR(um+p)v
so we get
DR(um — U, +p) = DR(um) _DR(um ¥ p)'
Since
-DR(um) 2DR(um+P) 2 0!
{D,(u,)} converges and
Dy(s—tp,,)—>0 as m—>oo.
On the other hand {u,} is bounded and u, is harmonic on R,—R,

and is equal to zero on R, Hence {u,} converges together with its
derivatives to a function # uniformly on every compact subset of
R, where u is harmonic in R—R, and is equal to zero on R,. Hence
u,—>u in BD-topology.

Now we put

f=¥—u
and

Sn=Y—1u,,.
Clearly {f.,.} converges to f in BD-topology and hence fe M,(R). By
Green’s formula,

Dy(u, f,,)=0.
From BD-convergence of {f,}, we have
(5) Dy(u, £)=0.
Next we put
V. =we,.

Since ¢,cM,(R), there exists a sequence {¢,,} such that ¢, ,c M (R)
and {¢,;} converges to ¢, in BD-topology for fixed », as 1—>oc. By
Green’s formula

D y(u, w¢n,i)=0)
since w¢, ;e M(R). Clearly the sequence {w¢, } converges to we, in
BD-topology, hence we have ¥,e¢M,(R) and

Dr(u, ¥,)=0.
The sequence {Y,} and the function Y satisfy the conditions in
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Theorem 1. In fact, the condition (1) is clearly satisfied. For the
condition (2), we note that {¢,} converges uniformly on R;. There-
fore we can assume |¢,|<M<+o on R;, and we have the following
inequality:
D o(we,) <D g(9,) +2MVD o(w) D o(¢,) + M2D o(w).
This shows that the sequence {Dgz(¥,)} is bounded. By Theorem 1,
{d,} converges to dy weakly in I'(R). Thus we have
(6) D y(u, ¥)=0.
From the equality
Dy(u, ¥)= Dy, w)+Dx(u, f)
and (5), (6), we have
Dy(u, w)=0.
Hence % is equal to a constant. Since =0 on R,, =0 on R.
Thus v=feM ,(R).
Remark: Theorem 2 is an extension of Proposition 10 in Royden
{7] and Lemma 1.4.1 in Nakai [5].
Corollary. M ,(R) is complete with respect to BD-topology.
Application: Let {G(z, w,)} be a sequence of Green’s functions
with poles w, in R. Suppose that {w,} is a divergent sequence of
points in R and that {G(z, w,)} converges to a harmonic function
h(z) uniformly on every compact subset in R. Then h(z) is singular
in the sense of Parreau [6] (Kuramochi [17]).
Proof. The following equality is well known:
D (min[G(z, w,,), ¢])=2zc
for any positive number ¢. Clearly
min[ G(z, w,), c]e M ,(R)
and
min[ G(z, w,), ¢]—>min[ h(z), ¢] in B-topology.
Hence by Theorem 2
min[k(z), ¢]e M ,(R),
therefore
Rlaim (min[&(z), ¢])=0 for any point ped,
where 4 is the hamio’;lic boundary of R (cf. p. 185 in Nakai [4]).
Let u(z) be the greatest harmonic minorant of A(z) and c. We have
0= Rlalzlg) sup (min[k(z), ¢])> R]let_l)lp sup #(z)=>0
for any point ped. By the maximum principle (Theorem 1.2, Corollary
(a) p. 192 in Nakai [4]), w(2)=0 on R. Hence h(z) is singular.

References

[1] Z. Kuramochi: On harmonic functions representable by Poisson’s integral. Osaka
Math. J., 10, 103-118 (1958).

[2] B. Sz. Nagy: Spektraldarstellung linearer Transformationen des Hilbertschen
Raumes. Berlin (1941).



170 M. KAWAMURA Vol. 40,

[8] M. Nakai: On a ring isomorphism induced by quasiconformal mappings. Nagoya
Math. J., 14, 201-221 (1959).

[4] ——: A measure on the harmonic boundary of a Riemann surface. Nagoya
Math. J., 17, 181-218 (1960).
[56] ——: Green potential of Evans type on Royden’s compactification of a Riemann

surface, to apear in Nagoya Math. J.
[6] M. Parreau: Sur les moyennes de fonctions harmoniques et analytiques et la
classification des surfaces de Riemann. Ann. Inst. Fourier, 3, 103-197 (1951).
[7] H. L. Royden: Harmonic functions on open Riemann surface. Trans. Amer.
Math. Soc., 73, 40-94 (1952).

[8] L. Schwartz: Théorie des Distributions. Hermann, Paris, 1 (1950).



