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35. Representation of a Semigroup by Row.Monomial
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By Edward J. TULLY, Jr.
University of California, Davis, California, U. S. A.
(Comm. by Kenjiro SHODA, M.J.A. March 12, 1964)

Let G be a group written multiplicatively. An n xn matrix
(where n can be any cardinal number) having at most one element
of G in each row and zeros elsewhere is callecl a row-,monomial

matrix over G. The set M(G, n) of all such matrices forms a semi-
group under matrix multiplication. Schtitzenberger [2, 3 and Preston
[1 have constructed representations of a semigroup S by row-
monomial matrices, i.e., homomorphisms of S into M(G, n). The
purpose of this note is to present, without proofs, a new method
for constructing such representations, which is more general than
the methods used by Schtitzenberger and Preston.

Our method is similar to that used in the theory of monomial-
representations of a group, and is somewhat analogous to the use,
in ring theory, of modules over a ring R to construct representations
of R by matrices over a field. We begin by defining the concept of
a set with a semigroup S of operators (which, as in [4, we shall
call an operand over S), and the endomorphisms of such sets (Sec-
tion 1). In Section 2 we study a special class of operands, called
free operands-with-zero, over a group G. These might be regarded
as analogous to vector spaces. M(G, n) is always isomorphic to the
semigroup of endomorphisms of some free operand-with-zero over G.
This leads in Section 3 to a procedure for determining all row-
monomial representations of a semigroup. However, this result is
not completely satisfactory, since it expresses the representations in
terms of operands over S and their endomorphisms.

In Section 4, we restrict ourselves to a special kind row-monomial
representation, viz., those in which at least one row can be "filled
arbitrarily" [or "filled almost arbitrarily". This means that there
is one row (say the i-th row) such that every monomial row vector
[or every non-zero monomial row vector actually occurs as the i-th
row of one of the matrices corresponding to the elements of S.
Thus the property in question is a kind of density condition.

It turns out that row monomial representations in which one
row can be filled arbitrarily arise from strictly, cyclic operands (in
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the sense of [4). The author [4 has shown that such an operand
consists essentially of the equivalence classes moclulo a right con-
gruence relation on S. This makes it possible to "internalize" the
procedure of Section 3, expressing the representation in terms of
right congruences on S and the multiplication of elements of S.

We note that the Schitzenberger-Preston representations have
the property that each row can be filled almost arbitrarily. The
representations determined here include these as special cases. In
Section 5, we present an example, which shows that the class of re-
presentations obtained in Section 4 is actually larger than the class
of Schitzenberger-Preston representations.

1. Operands and their endomorphisms. By an operand (or
right operand) Ms over a semigroup S, we mean a set M together
with a mapping (x, a)-->xa of MS into M, satisfying x(ab)--(xa)b.
Operands over S may be identified in a fairly obvious way with re-
presentations of S by transformations, that is, homomorphisms of S
into the semigroup of all transformations of a set M into itself.
We shall also have occasion to consider left operands sM, which are
defined similarly except that we write elements ofS on the left and
assume (ab)x--a(bx), and bi-operands, which involve a set M which
is simultaneously a right S-operand and a left T-operand with the
additional requirement that (ax)b=a(xb) for all x eM, a eT, b eS.

By an endomorphism of a (left or right) operand M we mean
a mapping of M into itself which commutes with the operations of
multiplying by elements of S. An endomorphism which is one-to-one
and maps M onto itself will be called an automorphism.

2. :Free operandso We call a left operand aM over a group G
free if it has a basis, that is a subset {u} such that each element
of M can be written uniquely in the form gu for gG. It follows
that each mapping of {u} into M can be extended uniquely to an
endomorphism of M. A free operand with one invariant element 0
adjoined will be called a free operand-with-zero. If M is a free
operand-with-zero, we can define a mapping of the semigroup E of
all those endomorphisms of M which leave 0 fixed into M(G, n), by
taking the image of an endomorphism = to be the matrix (a),
where a-g if there exists gG with uz-gu, and a.-0 otherwise.

Theorem 1. The mapping just defined is an isomorphism be-
tween E and M(G, n).

:. Row-monomia! representations By Theorem 1, we see that
the construction of row.-monomial representations of a semigroup S
is equivalent to the construction of bi-operands Mz where G is a
group and M is a free operand-with-zero. We can construct such
bi-operands as follows. Choose an operand Ms over S, and an in-
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ariant element z of M. Let X be the group of all those auto-
morphisms of Mz which leave z fixed. Choose a subgroup / of X,
with the property that no element of except the identity leaves
fixed any element of M other than z. Define an equivalence a on

M--{z} by: xay if and only if x-y for some . Suppose the
number of a-classes is n. Choose a family {u} of elements of M,
with exactly one u in each a-class. Let G be the anti-isomorphic
image of under a correspondence =. For each a eS, let a be the
nn monomial matrix (a.) where: a.=z, if ua=u for some
(necessarily unique) ez/, and a:.=0, otherwise.

Theorem 2. The mapping just constructed is a row-monomial
representation of S. Moreover, every row-monomial representation

of S can be constructed in this manner.
4. We now present a methocl for constructing those row-

monomial representations of S in which at least one row can be
filled arbitrarily. To simplify our statements, we assume that S has
an identity element 1. (This is no loss of generality, since an identity
element can always be adjoined.) First, choose a right congruence
z on S. Let A be the set of all elements 3 of S such that
(1) bc==(ab)a(ac) for all b, ceS, and
(2) a has a right inverse modulo a, that is, (ax)a 1 for some x eS.
Then T is a semigroup, the restriction of a to T is a (two-sidecl)
congruence, and the homomorphic image T/a is a group. Now choose
a subgroup G of T/a such that
(3) if a is an element of one of the a-classes in G, and (ab)ab for

some b eS, then a a 1.
Define an equivalence relation p on S by: b pc if and only if (ab)ac
for some a belonging to one of the a-classes in G. Choose a family
{at} of n elements with exactly one in each p-class. For each beS,
let b be the nn matrix (a), where a.--2 if 2 is a (necessarily
unique) a-class containing an element a such that ab-aaj, and a.=0
otherwise.

Theorem :. The mapping just constructed is a representa-
tion of S by row-monomial matrices, in which there are no zero
rows and at least one row can be filled arbitrarily. Moreover, every
such representation of S can be constructed in this manner.

To take care of the case where zero-rows occur, a slight mocli-
ficatio is necessary. We choose a as before, but also choose one
a-class Z which is a right ideal. When choosing G we impose the
additional requirement that azeZ whenever zeZ and a belongs to
one of the a-classes in G. The rest of the proceclure is the same
as before.

Theorem 4. The mapping just constructed is a representation
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of S by row-monomial matrices, in which at least one row can be
filled arbitrarily. Moreover, every such representation can be con-
structed in this manner.

5. Example. Suppose S is the direct product of a group H by
the additive non-negative integers. Let us choose a to be the identity
relation on S, in which each class consists of a single element. Then
A=HO, that is, the set {(x, 0)’xeH}. A/a is A itself, and G can
be taken to be any subgroup of A. Let us take G--A. Then each
p-class consists of the elements of S having a common second co-
ordinate. Suppose we choose a=(1, n), where 1 is the identity of H,
for n-0, 1,.... Then, by the methocl of Theorem 3, the matrix (a.)
corresponding to (h, n) is of infinite size, indexed by the non-negative
integers, with a-h if j-i+n, and a-0 otherwise. The first row
(but none of the other rows) can be filled almost arbitrarily. Thus
we see that this representation cannot be found by the Schtitzenberger-
Preston method. Indeed, it can be shown that the Schtitzenberger-
Preston representation of S involves 11 matrices.
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