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109. Extension of a Certain C* Algebra

By Hideo YAMAGATA
(Comm. by Kinjir5 KUNUGI, M.J.A., Sept. 12, 1964)

1. Introduction. All field operators such as creation operator,
annihilation operator and the values of field function obtained by the
cut off process are unbounded operators. Then C* algebra consisted
of all bounded operators is not necessarily sufficient as the set of ob-
servables. For the investigation of the various characters of field
operators, and for using the results of many researches with respect
to C* algebra effectively, its suitable extension is needed. The weak
topology used by R. Haag and D. Kastler in 1 becomes to one
powerful tool to extend C* algebra by its suitable use. In this paper,
we don’t device the suitable use of the weak topology, but we will
consider the meaning of the domain of selfadjoint unbounded oper-
ators, and show the limitation of the most usual weak extension of
this C* algebra from deeper view point than E2].

On the other hand, another extension using E.R. Integral has
been shown in 2_. The generalized mathematical expectation by
using A-integral (equivalent to E. R. Integral) has been already defined
by Kolmogorov in the most primitive form _7. But quantized so-
lution of the Klein Golden equation, etc. cannot be treated by this
method. Here, we will show the more extended concept of the observ-
ables by using n dimensional E.R. Integral and give the definition
of the observables containing the above solutions, etc.

2. Unbounded operators produced by Weak extension. Here,
we only consider the linear operator T densely defined in g. The
definition of unbounded operator is the following usual one.

Definition 1. If there is not a fixed bounded number C such
that [[T]]__<C[[]] for all contained in the domain, we call this
operator T an unbounded linear operator.

From the definition of the usual weak topology, we classify the
set of unbounded linear operators to the following two types:

(1) the domain of T is (C),
(2) the domain of T is purely contained in .
Let’s show the examples belonging to each class.
Example 1o Let {e,} be a base in (C), let D be the set of the finite

linear aggregate of e, and let T be a linear operator defined in the
set D with the property Ten--ne.

At the first step, using this D, let’s classify (C) and construct the
space of the classes /D.
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Next, after this classification let’s choose the base {x} of 53/D.
From Zermero’s axiom, it is obvious that this choice is possible.
From each class x of this base, let’s select an element %. in (C) and

define the extended operator T related to T with the properties Tx--O
for the above x.. The domain of this extended unbounded operator

Ts(C).
Ixample 2. The above T (in Example 1) is the operator in the

case (2).
But the more natural example can be constructed.
Ixample :o The creation operator defined in the possible domain

is the example of the case (2).
Let’s compare the above three kind of Examples. All these

operators are not continuous, but these examples have the differences
whether it is closed or not.

Now let’s show the definition of the closed unbounded operator.
Since unbounded operator T is densely defined, we can choose the

base {} of the separable Hilbert space (C) contained in the domain
of T. By using the Zermero’s axiom, this choice is also possible for
the non separable iHilbert space

Definition 2. If the set of the possible pair (x, Tx) for an un-
bounded operator T is closed in g3 g3, we call this operator T closed
unbounded operator. We call this set {(, Tx)} the graph of T.

Definition :. If unbounded operator T is not closed, we call
this T non-closed unbounded operator.

Example 1 shows non-closed unbounded operator such that

D--.. Here D,{e} is the set (in (C))
and D is the domain of T. Example 2 shows an unbounded operator
such that Dr,e,DrD, where D is the finite linear aggregate of
en used in Example 1. Example 3 shows a closed unbounded operator.
For each non-closed unbounded operator T, there exists at least one
closed unbounded operator T> which is equal to T in D (used in
Example 1). Here, this D is constructed from some base {e} of
in the domain of T. In Example 2 T is obtained compatibly (to
original T). The closed unbounded operator T which is obtained
from T compatibly (to the original T) is not always one. Because it
depends upon the method of the closed extension. By the same method
as Example 1, we can obtain the closed linear unbounded operator
whose restriction is the operator T in Example 3. From Toeplitz’s
theorem, it is obvious that the closed linear unbounded operator
defined in all (C) can not he obtained 4. Physical operator such as
creation or annihilation operator etc. is self adjoint. It can be re-
presented by the spectral decomposed form. Let’s denote it by
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T--.fdE(). Since T is not a bounded operator, the spectral measure

dE() is also distributed in the complement of any bounded interval.

The element of the Hilbert space 22 is represented by --;()dE()
j I(,) idllE(,)ll< + . This representationwhich has the character

is a sort of generalization of the orthogonal decomposition. Dr is the

set of the element e(C) such that

From the above considerations we see that these physical un-
bounded operators are closed unbounded operators, and its domain
depends on the style of improper integral.

Furthermore, we can extend the domain of the unbounded oper-
ators as follows.

Definition 4. 1) The domain of linear unbounded operator T is
Dr={; e(C), Te$p}(C). 2) The extended domain of linear unbounded
operator T is Dr=-{; @, T$p or ]IT,ll--+ o by some meaning}@.

For unbounded operator T, compatible Dr(4= DT) cannot be obtained
in usual. For example, the domain of T in Example 1 is 23. Even
the compatible Dr.[ cannot be obtained.

If Dr is purely contained in 23, this unbounded operator T is not
obviously contained in the weak extension of the set of bounded
operators by means of R. Haag and D. Kastler.

Hence in 2 we show that the operator T with the following
properties is not contained in the weak extension of the set of bound-
ed operators.

The properties are

(a) the compatible definition of DT(=DT) is possible, and

(b) D--@.
Even if there is only one element 9 such that I[Tgll--oo, the

result in [2 holds valid. Hence, at last, we must consider the pos-
sibility of the self-adjoint unbounded operaor (not necessarily closed)
defined in all elements of 2) similar to Example 1.

The following lemma shows that the self-adjoint unbounded
operators must be closed and these operators defined in 2) (in the usual
meaning) cannot be considered.

Lemma 1. If T is a self-adjoint operator, and if TXCe is
contained in (C), then it must be XCTe.

Proof. Let’s choose a base [e} in 33 and select sequence {C} such
that XCe and TXC,e . Since (e, TXCe} (Te,, XC,e}
for any m, it follows that (XCe, TXCe}=(TXCne, XnCnen}---
(2.Ce, 2CTe).
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For any finite sum Xde contained in D (Example 1), (Zde,
TXCe}(1/4) [(X,(d+Cn)en, T.X(d+C,)e)--(X(d--C)en, T.Zn
(d--C)en)+i(X,(d+iC)e, T. Z(d+iCn)e)--i(Xn(d--iC)e, T.X
(d--iC)en)}-(1/4){(X(d+C)e, Z(d-C)Te)--(Z(d--C)e, X(d--
C)Te)+i(Zn(d+iC)e, X(d.+iC)Te.)--i(Z,(dn--iCn)e, Zn(d--iCn)
Te)}-(Zde, ZCTe}.

Hence if TXCe is contained in $, then TXCe=ZCTe.
The essential tool in Lemma 1 is the adjoint operation. Then the

following extension of Lemma 1 is obtained.
Lemma 2. If T has an adjoint operator T*, if T*ee for

every n and if T(XCe) is contained in (C), then it must be XCTe.
Proof. For XnCne e, (ZnCnTen, znCnen} (nCnen, T*,nCnen}

( TznCnen, Znen holds good.
Then T(XnCnen)--,nCnTe by the same way as Lemma 1.
From these lemmas we see that the self-adjoint unbounded oper-

ator T is defined by ZCTe in its domain and the self-adjoint un-
bounded operator T with the domain 59 cannot be considered. Then,
at last, the following theorem is obtained.

Theorem 1. Physical unbounded operators whose adjoint can
be obtained are not contained in the weak closure of the set of
bounded operators.

The compatible extended domain Dr(4: Dr) can be defined natural-
ly. By the suitable summations rule, the domain of T can be extend-
ed and the extended domain is obtained. Namely, the summations
rule effect to the condition about the domain of T directly.

Hence we see that the rule of conditional convergence has special
important meaning. One of them is the following E.R. Integral.

:. ]o R. Ixtension. In this paragraph let’s try to represent
the expectation value of field functions (x) and (x)using E.R.
Integral.

(x) and (f(x) can be written down by the following form:

(x)--(1/(2)/) {fa (k)ekdk +fa(k)e-dk}
and (?.(x)--(1//-)Xk=(,,,.,,,)(a/(k)eik:+a(k)e-i’x).
From (x), the following cut off function ,(x) can be obtained;.(x) (1//) X ,k, _(a (k)ekx+ a(k)e-k).
Let’s represent the expectation value of r(x) by the integral of
the function f(x,u,v) (for xeE) defined in the interval Ou=<l
0 v_< 1 as follows.

f(x, u, v)--2f(x, u) for 1/2v=<1,
f(x, u, v)--2 {ft.(x, u)--f(x, u)} for (1/2)<v<=1/2,

f(x, u, v)--2 {f(x, u)--f_l(x, u)} for (1/2)<v<=(1/2)’-1, ....
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Here f+/-(x, u) is one of the function defined in E2]. f(x, u, v)

dudv is definite for any xeE by improper E.R. Integral.
Now let’s show the determination of the function f(x, u) corre-

sponding to the expectation value of the field function ,(x) precisely,
at once.

Let’s decompose (j= 1, 2) in=XC[ ZC[)Hk(n) and
construct @,-ZC),=XC[)Hk,@(n)) from using a sort
of cutoff.

Furthermore, decompose .,(x)@, in XC[(x).
Then, (,, ,(x),) can be represented by the infinite sum

2 C)C()xi,Mk 2"

,(x) has the following properties:
(1) For any , C[(x) are finite and fixed for all x and i.

XC C,(x) determined by the following integral is definite.
(Finiteness is omitted.)

Now, let’s determine its integrand.
At the first step, by ordering the positive integer valued func-

tions n. defined in K, we obtain the sequence (),. n(),... with
the property v (o_ <X n(’) for ls, where K is the bounded
set of the momentum k such that k[ M.

Next. define the following function f(x. u).
f(x. u) 2 C<).(x) for 1/2<u 1
f.(x. u)- 2 C2.(x) for (1/2) < u 1/2

f,(x, u)-2xC(,),(x) for (1/2)<u(1/2)’-,. .,
where C()(x)-((- Its integrand is this f(x,u) and

gl)C(X)-- (X,) by imroer N. R. Integral. he expeeta-

tion values of (x) can be represented by the integral of the function
f(x,, v, ) (for xeN) defined in the interval O<N1, O<vN1, O<
wN 1 as follows.

(x, , v, w)-2Xf(x, , v) for 1/2<w1,
f(x, , v, )-x{A(x, , v)-A (, , v)l or (/)< /

f(x, u, v, w)--2" X {f(x, u, v)--f_,(x, u, v)}
for (1/2)<w<(1/2)-Here f(x, u, v) is the above function corresponding to 9(,(x).

(V(p) is a cube with volume p and with center 0.) Its integral

flflflf(x, , v,) is definite Cot ny x by improper . R.

Integral.
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Using the above arguments, we can extend expectation values.
If a function with respect to x can construct the limit expectation
value with respect to n parameters which is definite for any elements
in (C) and x in E, we say that it is the extended observables of
order n.

Namely (x) is the extended observable of order two and (x)
is the extended observable of order three. In this definition we can
use the advantage of E.R. Integral with respect to the demension of
the domain of integrand. But this representation depends upon the
sequence of V and M. We cannot avoid this 6.
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