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138. E.R. Functional Integrals

By Hideo YAMAGATA
(Comm. by Kinjir6 KUNUGI, M.J.A., Oct. 12, 1964)

§1. Introduction. In order to define Feynman integral exactly,
the extension of the following spaces is required in functional integral:
(1) the functional’s domain 9, (2) the set of integrable (not necessarily
bounded) functionals defined on $. To perform the extension (1),
outer Hilbert space [1] or neuclear space [2] is already constructed,
because we cannot define even the completely additive Gauss measure
in . But the concrete meaning of these extended spaces are not
yet obvious, and it is difficult to clarify this. Hence let’s show here
another more concrete and more delicate extension of $ by using
E. R. integral without showing the relation between our extension
and the neuclear space etc. The meaning of this extended space in
Feynman integral is the increase of the considerable path in quantum
field theory. It seems to us that this extended space gives the
negative effect to the extension (2). For our purpose it needs to
compensate this negative effect by the suitable use of both extensions
(1) and (2). Furthermore, the extension (2) in Feynman integral
permits us to use the more singular potential.

Here, using E. R. integral as the most general singular integral,
the above extensions (1) and (2) for general functional integral is
performed in the most wide meaning. Furthermore, the type of
singularities in Feynman integral is investigated, and the possibility
of the definition of E. R. Feynman integral constructed by the ex-
tensions (1) and (2) is shown. Recently, the equivalence between
the primitive E. R. integral and A-integral by A. M. Kolmogoroff
has been proved. A-integral has very simple form [8], but in order
to construet the more wide organized extension of usual integral,
E. R. form is more useful than A-integral.

§2. Definition of E. R. functional integral. Afterwards, we
will use the same notations as one used in [5]. In this paragraph,
we will extend the set of integrable functionals C defined in [5].
For its preliminaries, let’s show an explanation about the concept of
cylinder functional appearing in the usual definition of functional
integral. Namely cylinder functional can be considered as the step
functional which is constant in the set of &(s) such that P (&(s))=P™"
(&%s)) for any j, fixed Dy and fixed £°(s). The original C in [5] is
the set of the functional f constructed by the convergent sequences of
step functionals in L'(9). Required improvements are the following two.
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(1) The function &(s) contained in the extended domain of
functional is one approximated by the sequence of step functions
in the more weak topology. (2) The functional f(¢) contained in the

extension of C is one approximated by the sequence of eylinder
functionals in the more weak topology. By the improvement (1), the
domain of the integrand of this functional integral is extended, on
the other hand the set of continuous functionals, consequently the
set of the integrable functionals is restricted.

In Feynman ‘integral, since the form of the functionals for
fixed potential is determined, the suitable extension of  is possible
and needed. But for the treatment of the more singular case the

extension of C is also required, because it extends the set of integrable
functionals. Let’s use these two extensions suitably, and construct
the extended Feynman integral.

At the first step, let’s investigate the approximation to &(s) by
the sequence of step functions. In [5], this sequence is converging
to &(s) in locally L? topology. Now, we use the convergence in ranked
space instead of the convergence in L* topology.

For the extension of $=Lj),;, the convergent sequence in ranked
space is used. Namely the neighbourhoods V(F, y; &)={n(s); n(s)—£&(s)e
V(F,v;0)} are used. Here, V(F,»;0) is the set of step functions
n(s)=p(s)+r(s) satisfied the conditions,

(A) 7(s)=0 in F, (B) f ‘In(s)|ds<2~, (O) \ f ‘¢(s)ds‘<z—v,

where FFC[0,1]. Suppose that the selection of the sequence {V(F,,
vy €0} with the following properties is possible. (a) V(F,,v;&)D
V(F2’ VZ; 52)D e (b) 'S(s)—_'}jglo Sm(s) (C) E2n=$2n+1’ x‘)211.<))2n+1

(d) F{mes ([0,1]—F,,)}=mes ([0, 1]—F,) for positive integer k=2
(e) there exists a function ¢(n) which has the properties 1) ¢(n)>0,
2) lim ¢(n)=0, and 3) |€.(8)|ds<¢(n) for EC[0,1] with the

n—co

B

measure mes F<mes{[0,1]—F,}. Then this &(s) is added to the
domain of functional and the E. R. continuous funectional is defined.

For the extension of $=L} .. .., the locally convergent sequence
in ranked space is used. The limit function locally convergent sequence
(by the above E. R. meaning) is contained in the domain of E. R.
continuous functional in this case.

Here, we use the word “step function” to the step function with
finite step. These step functions are used without the loss of gener-
ality. E. R. continuous functional is one with the following prop-
erties: (1) for the step function £,(s) with the fixed disecrete point
{S0s 81y * *» Sn}y F(€n(8)) can be defined and becomes to a continuous
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function F(x,, x,, - -+, 2,) defined in the m dimensional Euclidean space
E™, where %, (1=1,2,---,m) is the value of s,—s;_£,(s) in the
interval [s;_;,s;). (2) for the function &(s) which is defined by lim

Mm=->0

&.(s) in the above ranked space, f(¢(s)) can be defined and f(&(s))
=lim /(2. (5).

The integrable functional by this meaning can be represented by
a sort of limit of this E. R. continuous functionals. But we do not
discuss about this, because this is not main purpose of this paper.

At the second step, let’s show the definition of E. R. integrable
functional. The determination of F, is the most difficult part in this
definition. We denote by F, the set of the function &(s) which is
contained in the complement of H, and in the domain of the functional
f(&(s)). Here, the set H, is defined in the following.

For a division D,={s,, s,,- - -, s,} of the real axis, P{”(¢&(s)) (=1,2,
--+,n) can be defined (for [s,.y, s,), (s,-1, 8,1, [8,-1, 8;,] or (8,1, 8;).
Let H, denote the set of the funetion &(s) such that P/™(&(s)) (7=1, 2,
.-+, m) take the values in an open subset O of the real axis. We
may take all real axis as O. As the numbers related to H,

&™ and &™ are given. Namely let &™ denote the measure of O,
and £ denote the sum of (s,—s,_,) such that Of is all real axis.

Let’s take the open intervals as the intervals related to &™.
Here, the following neighbourhood of cylinder functionals V(F,y; f)
={9(&(s)); 9(&(s))—f(&(s))e V(F,v;0)} is used. V(F,»;0) is the set of
cylinder functionals f(&(s))=p(&(s))+7(é(s)) such that (A) »(&(s)

=0in F, (B) [InGe)ldea<2, (C) | [rewists)|<z,

where F' is the complement of some H,. Since the eylinder functional
S(&(s)) related to D, is considered as the step functional taking a
constant value in the set of &(s) with the property P/™(&(s))=k,
(k, fixed) for j=1,. -+, N, this definition of neighbourhoods are possible.

Suppose that the selection of the sequence {V(F,, v,;f,)} with the
following properties is possible.

(a) V(Fy, v f)2V(Fy, vy fe)2- - -, where f,, are cylinder function-
als for any m.

(b)  FE@)=limf.(&(s) for fixed &(s).
(e¢) UnD, is the dense set of the real axis.

(d) f2n=f2n+19 ”2n<”2n+1'
(e) kmesH,,,=mes H, for positive integer k>2.

(f) There exists a function ¢(n) which has the properties; 1) ¢é(n)
>0, 2) lim¢(n)=0, 3) f | £.(6(8)) | de(s) <é(n) for the set of func-
E
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tion E with the measure mes E<mes H,. Then f(&(s)) is the E. R.
integrable functional and f F(&)(s))de(s)=lim f Ja(E(s)) de(s)=1lim f e

I FPPES), =1,2, -, n) [[dPOGE(S).
7 _ =l 11=0§™

Here, liml,=o, f.(&(s)=F,(P™(E(s), j=1,2,---,m) and mes

(ITi([ =1, L,1NOS)) <e,, where ¢, is a sequence of non-negative
numbers tending to 0. The limit of the integral by Gauss measure
is a sort of variation of this improper integral. Now, using this
singular functional integral, let’s define the extended Feynman integral.

§3. E. R. Feynman integral [2]. In this paragraph let’s in-
vestigate the character of the singularities appearing in Feynman
integral, and define the E. R. Feynman integral.

Let &,(s), (gn(s)) denote the step functions converging to w(s)
(@(s)) as m— o in ranked space.

At the first step, let’s show the relation between &,(s) and &,(s).
Suppose that the divided points using to construct £,(s) are denoted
by 0=t,<t,<---<t,=t. Then &,(s)=Ah, for se(t,_y, t,], £,(8)=h, for
se(ty t,], and E,(s)=(h,—h,_))/(t;—t,_,) for se(t,_, t), where h, is
formed from the values of i(1/2m)dp—iVe in a fixed space point.

Using B, &,;t,m, V)= expi f "[mE (s)}2— V(£ (s))]ds instead

of E(w,®;t,m, V) n dimensional function F(k,, h,,- -, h,) is obtained.
From the relation between Feynman integral and the initial problem
of Schrodinger equation, we see that this relation between £,(s) and
£,(s) is very suitable.

Lemma 1. If o(s) (the element of L%, ts integrable and if

w(s)= f 8a')(s)ds—l—C (C s the imitial value w(0)), then the sequence of
0

the above pair step functions ({£,(s)}, {£.(s)}) converging to (w(s), &(s))
in L*}X L? can be constructed. Here, we omit the proof of this lemma.
Let 7,(5), 7.(), &.(s), and £,(s) be the step functions constructed
by using the same set of divided points D,.
Let D, be the set of divided points such that D,C D, for n<m
and U,D, is the dense set of considered real interval. Suppose that
({&.(9)}, {£.(8)}) converge to (», @) in ranked space.

Lemma 2. If lfn(s)—ﬁn(8)l<€n and |§n(s)—2n(s)l<€n (umen:O)r
then {n.(s)} and {7.(s)} are the sequence of step functions converg-
ing to w(s) and o(s) by the meaning of ranked space.

This lemma can be proved by using the character of the sequence
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of the neighbourhoods {V(F,, v,;f,)} in ranked space easily. Further-

more we can easily prove that if ({&.(s)}, {gn(s)}) tends to (w, ®) in
L*x L2, then ({7,(s)}, {7.(s)}) also tends to (w, @) in L'X L2

If V(s) is the bounded continuous potential, a functional E(w, »;
t,m, V) used in Feynman integral is a continuous functional in D3,
Here, Di:={f; (f,f)eL*xL?*. But if V(s) has singular points or if
V(s) is not bounded, we cannot define the functional E(w, &;t, m, V)
even in the set of w(s) defined in Lemma 1. Then we must select

some suitable conditional convergent sequence (£,(s), £,(s)) and must
define this functional for sufficiently wide w(s) by using this sequence.

Next, let’s investigate the effect of the square and the derivative.
For an arbitrary measurable function @(s), we can find the density

step function w(s) with the properties w(s)=E. R. f Sc'u(s) ds-+C in almost
0

everywhere [7]. But, @(s) is not necessarily contained in L%, ,;, because
the results in Lemma 1 holds good. Corresponding to this @(s), there

exists a bounded step function &,(s) and &,(s) such that lim £,(s)=
o(s) and lim f sg,,(s) ds+C=lim &,(s)+C=w(s) in almost everywhere.
0

For these w(s), we must give the following extensioxg of functional
used in Feynman integral: E(o, ®;t, m, V)=lim E(¢,, &,;t, m, V).

Here, the meaning of lim is to take an accumulated point of argument

as its argument. If w(s) has the suitable smoothness, we also use the
initial condition »(0)=C’. By the above consideration we can obtain
the following

Theorem 1. The singularity in E(w,o;t, m, V) is one of the
following two type’'s singularities.

(1) the restriction of the domain derived from the singularities
V(s) (contained s= oo),

(2) the restriction of the domain derived from the possibility
of the derivation and the square integral.

In order to define Feynman integral exactly, we must use the
most general singular functional integral. E. R. functional integral
is the most general and most constructive one. Using this mild
integral, we can avoid the above singularities.

Now let’s show them by comparing with our definition of E. R.
functional integral. The first singularity can be avoided by the
elimination of the open set O with the measure &0 defined in
§2. The second singularity is the difficult one to avoid it. As we
have already shown, the problem about integrability rises from this
singularity. But, if the set of these paths has total measure zero
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in § or in its extension, this singularity is not effective one. Here,
this singularity which gives the essential effects to functional integral
is eliminated by the process to determine the pair of step function’s
sequences ({£,(s)}, {€.(s)}) and to consider lim by some determined rule
Dn—»oo
except for the process to construct improper integral.
Furthermore even the other difficulties derived from lim can be

Do
avoided by the elimination of the divided intervals related to &
defined in §2.

From the above considerations we obtain the following

Theorem 2. If the potential V(s) has separated singular points,
E. R. Feynman integral can be defined formally.

According to these Theorems 1-2, we know that E. R. exten-
sion of functional integral is valuable for its application. Only the
problem about the coefficients in Feynman integral is still remained [5].
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