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1. Basic notions. We shall understand by a rectangle any
closed nondegenerate interval of the Euclidean plane R. The letter
I will be reserved to denote a rectangle. Let I--a, b; a, b ex-
plicitly. When 0al and 2amin (bl--al, b--a.), we say that a

is admissible for I and we find it convenient to write

Further, Rec I will denote the class of all subrectangles of I (inclu-
sive of I itself).

Suppose that T is an additive continuous map of Rec I into the
Euclidean space R of dimension m. In other words, let the m co-
ordinates of the point T(J), where JeRec/, be additive continuous
functions of J in the usual sense Saks 4, Chap. III. If a is any
admissible number for I, the quotient

T.(x, y)--T([x--a, x-a; y--a,
defined for the points (x, y} of the rectangle I., is obviously a con-
tinuous map of I into the space R. We may say that T. is the
squarewise mean of T (for squares of side-length 2a).

Let g denote generically a continuous map of a rectangle K into, and let be a functional which assigns to each g a nonnegative
value (g)=(g; K)__<+. (It should be noted that not only the
map g, but also the rectangle K is supposed arbitrary; the space R,
however, is kept fixed.) If J is a subrectangle of K, the partial map
g lJ is continuous on J and we shall write r(g; j) for (g]J).

Given as above the map T and the functional , let t be a ge-
neric continuous map of I into R. We shall denote by M(, T),
or more expressly M(, T; I), the lower limit of (t; L) as a-0 and
p(T., t;/.)-0 simultaneously, where a,/., T. have the aforesaid mean-
ing and p indicates the ordinary distance, on I, between the two
maps T. and t. In other words, M(, T) means the supremum of
M(fl, , T) for all fl0, where M(fl, , T) is the infimum of ?/r(t;/.)
for all pairs (a, t} such that a<fl and p(T,, t; I,)<fl. (The last in-
equality is fulfilled if, for example, we choose for t any continuous
extension of T to the whole rectangle /.)

2. Aim of the note. By a nonparametric measurable surface
we shall mean a surface of the form z--f(x, y), where f is a finite
measurable function on a rectangle. We are interested in the theory
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of area of such a surface. As far as the author knows, Cesari 1]
was the first to give a successful definition of the area in question.
In the present note we shall introduce another definition of area, by
specializing suitably the quantity M(Z, T) obtained just now. Our
main result will assert that the new area coincides identically with
Cesari’s.

The process of specialization of M(F, T) might find further ap-
plications to the geometry of surfaces. In particular, we could thus
generalize the well-known notion of "integral curvature" of smooth
surfaces to the case of nonparametric continuous surfaces on a rec-
tangle. Space limitation prevents us, however, from touching upon
this subject.

3. Area of nonparametrlc measurable surfaces. Let f be a finite
measurable funetion on I. (A function, by itself, will exclusively
mean a real-valued one.) An additive continuous rectangle-function
F defined on the class Ree I will be termed a primitive for f, when-
ever at almost every point (z, y) of I the ordinary derivative F’(z, y)
exists and coincides with f(x, y). By Lusin’s theorem [Saks 4, p. 218,
small print],, there always exist such functions F.

If g is an arbitrary continuous function on a rectangle K, the
Lebesgue area of the nonparametrie surfaee z---g(x, y) will be written
S(g) or S(g; K), as in [Saks 4, Chap. V].

Returning to the funetion f, let F be any primitive for f. In
the terminology of 1, the function F is an additive eontinuous map
of Ree I into the real line R. We now speeialize the functional
of the same section to be the Lebesgue area S just considered, i.e.
we put (g; K)= S(g; K) identically. The quantity M(S, F; I) is then
well determined.

We are now in a position to define the area, A(f) or A(f; I), of
the nonparametrie measurable surfaee z-f(z, y). Namely we set A(f)
to be the infimum of M(S, F; I) for all ehoiees of the primitive fune-
tion F. If J is any subreetangle of L we shall write A(f; J) for
A(f lJ).

4. Area of nonparametric summable surfaces. In this section
we suppose f to be a finite summable function on L For each rec-
tangle JI let F(J)denote the integral of f over J. Since F is
then a primitive for f by a standard theorem, the consideration of
the preceding applies and yields the quantity M(S, F; I).

On the other hand, we defined in our previous note 3J an area
of the nonparametric summable surface z-f(x, y) and denoted it by
L(f) or L(f; I). We readily find, however, that this area L(f) is
no other than M(S, F; I), so that A(f)<=L(f). Indeed, if is admis-
sible for I and (x, y) is any point of I.,
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F"(x’ Y)-- 1 F([x Y; a)-- 1 !" I"4a. 4a. -f(x-u, y+v)dudv,

where Ix, y; a abbreviates Ix--a, x+a; y--a, y+a. Thus the square-
wise mean F is the integral mean of the function f.

5. The Cesari area. We return to the situation of 3 and sup-
pose again that f is a finite measurable function on L In his paper
[1, Cesari introduced the area L*(f) of the surface z=f(x, y) as
follows. Let --(p; n--l, 2,...} be an arbitrary infinite sequence of
polyhedral functions on I, such that for almost every point (x, y}
of I, we have p(x, y)f(x, y) as n->+ . It may be observed that
the existence of $ is an immediate consequence of Lusin’s theorem
[Saks 4, p. 72 and Tietze’s extension theorem. We define now

L*(f) L*(f; I)--Inf lim inf S(p,; I),

where S denotes the Lebesgue area as before. (We write Inf for
"infimum" and inf for "inferior", in order to avoid any ambiguity.)

REMARKS. 1 We could have used continuous, instead of poly-
hedral, functions in the foregoing definition. The verification is im-
mediate.

2 L*(f; J) has an obvious meaning for Je Rec I and is evidently
a monotone nondecreasing function of J.

6. Identification of the Cesari area with ours. As above, sup-
pose f a finite measurable function on /. We are concerned with
proving the identity L*(f)=A(f), and we begin with the following

LEMMA ). L*(f) <= A(f).
PROOF. It suffices to show that L*(f; I)<__M(S, F; I) whenever

F is a primitive for the function f. To each positive integer n we
can, by the definition of M(S, F; I), make correspond a number a(n)
admissible for I and a continuous function g, on L such that a(n)n-1,
p(F.(), gn; I.n)) < n-l, and

Z(g,; I.,)) <= M(S, F; I) + n-1.
(Of course F.(,) denotes the squarewise mean of F, and /,(,) the rec-
tangle on which F,(n) is defined, in accordance with 1. On the other
hand, since n is an integer and so not admissible for /, the use of
n as subscript in g, cannot give rise to any confusion.)

It follows at once that lim g,(x, y)=f(x, y) almost everywhere
on L Hence, if J is any rectangle fixed in the interior of /, the
remarks of 5 and our last inequality together yield

L*(f; J) =<lim inf S(g; J) =<lim inf S(g; I.())<=M(S, F; I).
The 1emma will therefore be established as soon as we have ascer-
tained the following assertion.

LEMMA (ii). L*(f; I) is the supremum of L*(f; J) for all rec-
tangles J situated in the interior of L
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PROOF. For any positive number r and any set X in the plane,
we shall write rX={rw; w eX}. Further, if ? is a finite function on
the rectangle rI, the symbols ) and :r will denote the functions
defined for all w e I respectively by

)(w)--(rw) and (w)--r-.(rw).
To prove the lemma, we may and do assume that the centre of

I is the origin of the plane. Suppose given a positive number =<1.
On account of Lusin’s theorem [Saks 4, p. 72, there exists in the
interior of I a compact set K for which ]I-- K] and on which
the function f is continuous. We fix this set K.

It is clearly possible to choose in the open interval (1--, 1) a
number c so as to fulfil the three conditions c-KI,

p(f), f; c-K)</2, and p(f f); g’)</2,
where and subsequently we write for short K’--Kc-K. (Indeed
any c1 sufficiently near I will serve the purpose.) We must then
have the inequality
( p(f, f-; K’) <.

The definition of the Cesari area L*(f; cI) implies the existence
of an infinite sequence of polyhedral functions p, p,.., defined on

cL such that limp(w)-f(w) for almost every w ecI and that
liminf S(p; cI)<=L*(f; cI)+c8/2. Applying Egorov’s theorem Saks
4, p. 18 to this sequence (p,}, we can find in cI a measurable set
E for which ]cI-EI c and on which (p} converges uniformly
to f. It follows at once that there exists on cI a polyhedral func-
tion p which satisfies both

p(p, f; E) <c and S(p; cI) <L*(f; cI) --c.Consider the function p, which is plainly polyhedral on I. We
verify immediately p(p, f; c-E)--c-. p(p, f; E) and

S(p; I) c- S(p; cI) c- L*(f; cI) +.
In view of the inequality (.) we find further p(p, f; K*)2, where
K*--K’c-E. This set K* fulfils moreover

[I--K* <: ]I--K] - ]I--c-KI + II--c-E] <++--3.
Let n--l, 2,... and let us specialize -n- in the foregoing.

The number c, the function p, and the set K* now depend on n,
and we shall denote them by c, q, K respectively. Summarizing

what has already been established, we find that 1--n-c,l, that
q is a polyhedral function on I, that K is a measurable subset of
I for which I--KI <3/n, and that

p(q, f; K)<2/n, S(q; I)<c.L*(f cI)--n-.
Define finally H--K.K/... for n-- 1, 2, .... Then H, H.,
form an ascending sequence of measurable subsets of I and we

have I--HI <= I--KI -- I--K/ +. 6/n for every n. Accord-
ingly, if we write H=limH--liminfKn, we get II--HI--O. Fur-
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thermore, each point w of H belongs to all but a finite number of
the sets K, so that q(w)--f(w)l<2/n for n sufficiently large. The
sequence (q} thus converges to the function f almost everywhere
on L It follows by the definition of L*(f; I) and the above estima-
tion of S(qn; Z) that

L*(f; I)__<lim inf S(qn; I)__<lim inf c.L*(f; cI).
If, therefore, a denotes the supremum appearing in our lemma, then
L*(f; I)__<lim inf a/c.--a. This completes the proof since evidently
L*(f;I)>=a.

LEMMA (iii). If g is a continuously differentiable function on a
rectangle I-a, a-h; b, b-k_, there always exists in I at leas$ one
poin (o, Yo) with the following property:

(I) II ,g(x, y)--g(Xo, yo)]dxdy<2.(I)_ II (hlx /ki[)dxdy.g

The proof is left to the reader.
LEMMA (iv). The finiteness of the area L*(f) implies the sum-

inability over I of the function fi
PROOF. By hypothesis there is on I a sequence of polyhedral

functions (p; n=l, 2,...} tending almost everywhere on I to f and
such that the corresponding areas S(Pn) form a bounded sequence.
Let us associate with each n a continuously differentiable function
g on I subject to the conditions

p(p, g; I)<n- and S(g)<S(p)+n-,
the existence of such a function being ensured by Radb’s theorem
[Saks 4, p. 179. Then gf almost everywhere on I as n+,
and the sequence (S(gn)} is bounded. The supremum of this sequence
will be written a, so that a +.

Now S(g) is given, for each n, by the well-known formula

/ +/ +1 dxdy.

This, combined with S(gn)6 shows that

 ldxgy . and

If, therefore, we put explicitly I= a, a+h; b, b+k, it follows at once
by lemma (iii)that for each n=1,2,.., there exists in I a point
(x, y) fulfilling the inequality

(I) --Ign( y)-gn(n, Yn) lddy

Henceforth we shall wite for simplicity y=g(x, y).
Consider the sequence y, y,.... Without losing generality we

may assume the existence of the limit 7 (finite or ) of this se-
quence; for otherwise we need only pass to a suitable subsequence.
Since lira g(x, y)= f(x, y) almost everywhere on I (see above), the
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function g(x, Y)--V tends, as n-->+o, to f(x, Y)--r almost every-
where on I. (It should be remarked that if ’-+/-, then 7-- is
understood to vanish.) In consequence, by Fatou’s lemma and what
has already been stated, we obtain

I If(x, Y)--ldxdy <=lim inf (I)II Ig(x,(I)
3J

__<2(h+ k)a.
From this we deduce successively that is finite and that f is sum-
mable on I. The lemma is thus established.

THEOREM. We have L*(f)-- A(f) for every finite measurable

function f on a rectangle L
PROOF. In virtue of 1emma ( it suffices to derive the relation

A(f)<=L*(f) in the case in which L*(f)+. Then f must be
summable over I by lemma (iv). The Goffman area (f) of the surface
z--f(x, y) therefore exists [Goffman 2, and we have q(f)--L*(f)
by theorem 5 of [2. On the other hand we have already seen in

4 that A(f) cannot exceed the area L(f) of our note [3. But it
was proved in [3, 5 that the two functionals and L coincide
identically. Hence the desired inequality follows, and the proof is
complete.

REMARK. The preceding proof leans heavily on the two identities
L*()--() and ()--L((?), or more accurately, on their consequence

L*()--L(), where is a finite summable function on a rectangle.
Now, as we recall, ((?)-L() was established in [3 without having

recourse to [1 or [2. There springs up the question whether it

be possible to derive independently also L*()--L(), without inter-
mediation of the Goffman area. We are unable to settle this at pre-
sent. (Needless to say, it is only the inequality L()<=L*() that
matters.)
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