52 [Vol. 41,

11. On the Sequence of Fourier Coefficients

By P. L. SHARMA

Department of Mathematics, University of Saugar, India (Comm. by Kinjirô KUNUGI, M.J.A., Jan. 12, 1965)

1. Let $A:(d_{n,k})$, $n, k=0, 1, 2, \cdots$ and $d_{n,0}$, be a triangular Toeplitz matrix satisfying the conditions

(1.1)
$$\lim d_{n,k}=1$$
 for every fixed k ,

and

$$(1.2) \qquad \qquad \sum_{k=0}^{n} |\Delta d_{n,k}| \leq K$$

where

$$\Delta d_{n,k} = d_{n,k} - d_{n,k+1}$$

and K being an absolute constant independent of n. It is easy to see that the third condition of Silverman Toeplitz theorem [page 64, 1] is automatically satisfied.

An infinite series $\sum u_n$ with the sequence of partial sum $\{S_n\}$ is said to be summable A to the sum S if

(1.3)
$$\lim_{n\to\infty}\sum_{k=0}^{n}\Delta d_{n,k}S_{k}=S.$$

We obtain another method of summation viz. A. (C, 1) by superimposing the method A on the Cesàro mean of order one.

2. Let f(x) be a function which is integrable in the sense of Lebesgue over the interval $(-\pi, \pi)$ and is defined outside this by periodicity. Let the Fourier Series of f(x) be

(2.1)
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} A_n(x),$$

then the conjugate series of (2.1) is

(2.2)
$$\sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx) = \sum_{n=1}^{\infty} B_n(x).$$

We write

$$\psi(t) = f(x+t) + f(x-t) - l$$
.

Siddiqui [4] has proved that, if

(2.3)
$$\sum_{k=0}^{n} | \Delta^{2} d_{n,k} | = o(1)$$

and $\psi(t)$ is of bounded variation in $(0, \pi)$, then $\{nB_n(x)\}$ is summable A to l at t=x. Recently he [5] gave a necessary and sufficient condition on A for the validity of the above theorem.

The object of this paper is to prove the following theorem: Theorem. If

(2.4)
$$\Psi(t) = \int_0^t |\psi(t)| dt = o\left(t/\log\frac{1}{t}\right) \text{ as } t \to 0,$$

and for some γ with $0 < \gamma < 1$,

(2.5)
$$\lim_{n\to\infty} \sum_{k=0}^{n} K^{\gamma} | \Delta^{2} d_{n,k} | = o(1),$$

then the sequence $\{nB_n(x)\}\$ is summable $A\cdot (C,1)$ to the sum l/π .

It may be noted here that the regular matrics which satisfy the condition (2.5) with $\gamma=0$ are called strongly regular [2].

If we choose $\Delta d_{n,k} = \frac{1}{(n-k+1)\log n}$, summability A reduces to

Harmonic summability. It is easy to see that (2.5) is also satisfied. Hence our theorem includes the result of Varsney [8] as a particular case.

3. Proof of the theorem. If we denote the (C, 1) transform of the sequence $\{nB_n(x)\}$ by ρ_n , we have after Mohanty and Nanda [3],

(3.1)
$$\rho_n - l/\pi = \frac{1}{\pi} \int_0^{\delta} \psi(t) \left[\frac{\sin nt}{nt^2} - \frac{\cos nt}{t} \right] dt + o(1),$$

by Riemann-Lebesgue theorem, δ being constant greater than zero.

On account of regularity of the A method of summation. We need only to prove that

(3.2)
$$I = \frac{1}{\pi} \sum_{\substack{k=1 \ \text{training}}}^{n} \Delta d_{n,k} \int_{0}^{\delta} \psi(t) g_{n}(t) dt = o(1),$$

where

$$(3.3) g_n(t) = \frac{\sin nt}{nt^2} - \frac{\cos nt}{t}.$$

We require the following inequalities which can be easily obtained by expanding sine and cosine in powers of n and t:

(3.4)
$$g_n(t) = O(n^2t)$$

= $O(n)$

and

$$(3.5) g_n(t) = O(t^{-1}).$$

It is also known [7] that

(3.6)
$$\sum_{\nu=1}^{n} \frac{\sin \nu}{\nu} = O(1).$$

Now, for $0 < \gamma < 1$,

$$egin{aligned} I &= rac{1}{\pi} \sum_{k=1}^{n} \varDelta d_{n,k} iggl\{ \int_{0}^{k-1} + \int_{k-1}^{k-\gamma} + \int_{k-\gamma}^{\delta} iggr\} g_{n}(t) dt \ &= rac{1}{\pi} iggl\{ \sum_{k=1}^{n} \varDelta d_{n,k} (I_{1} + I_{2} + I_{3}) iggr\} \ &= rac{1}{\pi} igl[au_{n}(I_{1}) + au_{n}(I_{2}) + au_{n}(I_{3}) igr], \quad ext{say.} \end{aligned}$$

Using (3.4), we get

$$egin{aligned} \mid I_{1} \mid \leq \int_{0}^{k-1} \mid \psi(t) \mid \mid g_{n}(t) \mid dt \ & \leq O(k) \varPsi(1/k) \ & = o(1/\log k) + o(1) \ & = o(1) \quad \text{as } k \to \infty. \end{aligned}$$

Further, with the help of (3.5), we write

$$egin{aligned} &|I_2|\!\leq\! O(1)\!\cdot\!\int_{k^{-1}}^{k^{-\gamma}}\!rac{|\psi(t)|}{t}dt\ &=\!O(1)\!\cdot\!\left\{\!\left[rac{\varPsi(t)}{t}
ight]_{k^{-1}}^{k^{-\gamma}}\!+\!\int_{k^{-1}}^{k^{-\gamma}}\!rac{\varPsi(t)}{t^2}dt
ight\}\ &=\!o\!\left(rac{1}{\log k}
ight)\!+\!o(1)\!\cdot\!(\log\gamma)\ &=\!o(1) \quad ext{as }k\!-\!\infty\,. \end{aligned}$$

Thus the first two terms in (3.7) can be made as small as we please by choosing n sufficiently large as the transformation τ_n is regular.

From (3.3) and (3.5), we write [see also, 6]

$$G_{
u}(t) = g_1(t) + \cdots + g_{
u}(t)$$

$$= \frac{1}{t^2} \sum_{\nu=1}^n \frac{\sin \nu t}{\nu} - \frac{1}{t} \sum_{\nu=1}^n \cos \nu t$$

$$= O\left(\frac{1}{t^2}\right) - \frac{1}{t} D_{
u}(t)$$

$$= O\left(\frac{1}{t^2}\right),$$

where $D_{\nu}(t)$ is the Dirichlet Kernel for convergence of Fourier Series, and it is known that $D_{\nu}(t) = O\left(\frac{1}{t}\right)$. It is easy to see that $\sum |\Delta d_{n,k}| < \infty$

and $\sum k^{\gamma} |\mathcal{A}^2 d_{n,k}| < \infty$, imply that $k \mathcal{A}^{\gamma} d_{n,k} \rightarrow 0$, hence using Abel transformation, we write

$$\begin{split} |\tau_n(I_3)| &= \left| \sum_{k=1}^n \varDelta d_{n,k} \right|_{k-\gamma}^{\delta} \psi(t) [G_k(t) - G_{k-1}(t)] dt \right| \\ &\leq \left| \sum_{k=1}^{n-1} \varDelta^2 d_{n,k} \right|_{k-\gamma}^{\delta} \psi(t) G_k(t) dt \Big| \\ &+ \left| \sum_{k=2}^n \varDelta d_{n,k} \right|_{k-\gamma}^{\delta} \psi(t) G_{k-1}(t) dt \Big| + o(1) \\ &= L_1 + L_2, \quad \text{say.} \\ L_1 &\leq O(1) \cdot \left\{ \sum_{1}^{n-1} |\varDelta^2 d_{n,k}| \int_{k-\gamma}^{\delta} \frac{|\psi(t)|}{t^2} dt \right\} \\ &= O(1) \left\{ \sum_{1}^{n-1} k^{\gamma} |\varDelta^2 d_{n,k}| \int_{k-\gamma}^{\delta} \frac{|\psi(t)|}{t} dt \right\} \\ &= O(1) \left\{ \sum_{1}^{n-1} k^{\gamma} |\varDelta^2 d_{n,k}| \right\} \cdot \left\{ o\left(\frac{1}{\log k}\right) + o(\log \gamma) \right\}, \quad \text{by (3.5),} \\ &= o(1), \quad \text{with the hypothesis (2.5).} \end{split}$$

Further.

$$\begin{split} L_2 &= O(1) \cdot \left\{ \sum_{k=2}^n | \ \varDelta d_{n,k} \ | \ \int_{k-\gamma}^{(k-1)^{-\gamma}} \frac{| \ \psi(t) \ |}{t^2} dt \right\} \\ &= O(1) \left\{ \sum_{k=2}^n k^\gamma \ | \ \varDelta d_{n,k} \ | \ \int_{k-\gamma}^{(k-1)^{-\gamma}} \frac{| \ \psi(t) \ |}{t} dt \right\} \\ &= O(1) \left\{ \sum_{k=2}^n k^\gamma \ | \ \varDelta d_{n,k} \ | \right\} \left\{ \left[\frac{\varPsi(t)}{t} \right]_{k-\gamma}^{(k-1)^{-\gamma}} - \int_{k-\gamma}^{(k-1)^{-\gamma}} \frac{1}{t \log \frac{1}{t}} dt \right\} \\ &= o(1). \end{split}$$

This completes the proof of the theorem.

References

- [1] R. G. Cooke: Infinite Matrices and Sequence Spaces. (1950).
- [2] G. C. Lorentz: Direct theorems on methods of summability. Canad. Jour. Math., 1, 305-319 (1949).
- [3] R. Mohanty and M. Nanda: On the behaviour of Fourier Coefficients. Proc. Amer. Math. Soc., 5, 79-84 (1954).
- [4] J. A. Siddiqi: On the theorem of Fejér. Math. Leit., 61, 79-81 (1954).
- [5] —: The Fourier Coefficients of continuous functions of bounded variation.

 Math. Annalen, 143, 103-108 (1961).
- [6] P. L. Sharma: On the Sequence of Fourier Coefficients. Proc. Amer. Math. Soc., 15, 337-340 (1964).
- [7] E. C. Titchmarsh: Theory of Functions. p. 440 (1952).
- [8] O. P. Varsney: On the Sequence of Fourier Coefficients. Proc. Amer. Math. Soc., 10, 790-795 (1959).