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5. The Plancherel Formula for the Universal
Covering Group of De Sitter Group

By Kiyosato OKAMOTO
(Comm. by Kinjirdé KUNUGI, M.J.A., Jan. 12, 1965)

In his recent paper [3], R. Takahashi conjectured the explicit
Plancherel formula for the universal covering group of De Sitter
group.

The purpose of this paper is to prove that this formula is actually
the Plancherel formula of the group.

The method in the present paper can be applied for other groups.
For simplicity, however, we confine our considerations only to the
above mentioned group.

1. Let G be the universal covering group of De Sitter group
realized in [3].

We define three one-parameter subgroups whose generic elements

_ (e 0> __(cht/2 sht/2 _ (e 0
m"’_( 0 ewn) “‘”(sht/z cht/2)' “"—( 0 e—“’“)

respectively and denote by H,, H,, H, the left invariant infinitesimal
transformations defined by these subgroups. Put
A,={am,; t, o€ R}, A,={ugm,; 0, o€ R} .

Then A, and A, are the non conjugate Cartan subgroups of G
(see [1 (b)]). Every Cartan subgroup of G is conjugate with either
A, or A, (see [2]). We put G,=U gA,g7" (k=1, 2).

Let U,, and T, , be the charagters of the representations U™3/*+%
and T"%*@T%? defined in [3] respectively, then there are locally
summable functions ¥, ¥¥, on G such that

D=\ for@ds,  T..(0=] rene@ds,

where dg is the Haar measure on G (cf. [1(f)]). Let g, b, b, be the
Lie algebras of G, A,, A, respectively.

There exists a Cartan involution 6 of g such that 69,=9, (k=1, 2).
Let g=t+p be the corresponding Cartan decomposition of g.

We can select compatible orderings in the dual spaces of §,Np
and §,Np+h,N¥E (see [1(d)]). Let P, be all positive roots in this
order. Put Pf={ac P,; a(h, Np)+*#{0}}, then P,—P; is the disjoint
sum of the set P} of all non compact positive roots and the set P;
of all compact positive roots (see 1(b)). We put

A,,(exp H) =| II (6a(H)/2_ e—-w(H)l2) II (ew(H)lﬂ_ e—w(mﬁ)
a€P} aepPQuPy

are;
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Due to T. Hirai, the values of the characters on regular elements
in Cartan subgroups are as follows;

Oam,)= jzc:’—m—){cos vt sin (n + —é—)go} ,
IAN TLAL)

XL tam,) =0,

@ — v —(p=H)1tl i 1N b g _1 }
ADp(am,) dx(aamy) {e sin (’n-l— 5 )go e sin (p 5 )go ,
8 um)=— =L fsin (p—L)0 sin (n+ L
AL (UgM,) = Da(uamy) sin (p 3 )0 sin (n+ 2 )go

. 1 . 1
sin (n+§)0 sin ( —2«)50}.
From these, we can deduce the following formulas (A) (see [1(a)]);

U, (f)=—i m cos vt sin (n+ l>¢F;1>(atm¢)dtd¢,
0Jo 2
Y, oo (27 . -—%)t . —1—
@ TupH=—i | [ferpesin(n+ D)o

— =+ gin (p~—%)go}F}”(a,m¢)dtdgo

——l Szn‘ Sh’ { . _i . —];
4 ) e sin <p 2)0 sin (n—l— 2)90
—sin <n—l—%>0 sin (p—%)go}F}”(uom(,)dﬁdga,
for all fe Co(G).
In this formula,
Fp(y=40) || f0)dp(e) for he i, (k=1,2)
Ap

where z* is an element of G/A, and h*=xhx™" if x*=xA,, and p,
is the invariant measure on G/A,.

2. Let AY be the set of all points A=exp He A, such that
I (e —g=®i% 0, then ugm,c Ay if and only if 6#0, ¢#0

®EP,y

(mod 27).
Let B be the Killing form on g°. For each e P,, there exists
a unique element H,ec )¢ such that B(H, H,)=a(H) for all He %5.
Put 8(w,)= el'll) H,, where the products are meant to be those of
®€EPL

left invariant differential operators.

When D is a differential operator on A,, put f(h, D)=(Df)(h).
From the general theory due to Harish Chandra (see [1 (d) (e) (f)]),
we have the following lemma.

Lemma 1. (1) Fj" can be extended to a function of class C* on
A, with the compact support.
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(2) Let B be any connected component of A;, then F® and its
derivatives of arbitrary degree can be extended to continuous
functions on the closure of B in A, with the compact supports,
which are class C* on A4;.

(3) There exists a real number ¢+#0 such that

im F(h, 8(m)=cf(e).  (he Ay

The following lemma plays an essential role in the present paper.
Lemma 2. Let P be any polynomial in two indeterminates, then the

series
3 PO, (FeCIO)

is absolutely convergent.
Making use of lemma 1 and lemma 2, we get the following.
Theorem

W) wfos Pl 5 oo

=6 S» S " sin vt cos (n + —%)go FP(agm,, 0(,))dtde,

0 J—2r
(2) 4[lm@—m")|T,(f)
=—2% 64S°°SM {e~"¥'* cos mo+e~'™'t cos lp} F'{V (a,my, 0(m,))dtde
0

—an

+ 6‘SM Sh {cos 10 cos me -+ cosmd coslp} F & (ugm,,d(x,)dode,

—2r ) —27

where I, m are half integers such that [—me Z, and Max{|l], | m|}
=n-+1, Min{1], |m}=p—7-

Lemma 3. F{(a_m,)=F(am,), FPlam_,)=—F%(am,),
FP(u_gm_,)=FP(ugm,), FP(ume)=—FH(usm,).
From lemma 1 and lemma 3, we can deduce the following lemma.
Lemma 4.
Let » and s be non negative integers, then;
(1) lim Ff(am,, H{H?)=0,
(2) linrfl3 FP(am,, HH)=0 if 8=0 or +2=x.

(%
Making use of (1) in lemma 1, we can easily prove (1) in Theorem

by integration by parts from (A).

However F® is, in general, not of class C* and we can not
expect even its continuity. The idea of the proof of (2) in Theorem
can be explained as follows. Let ! and m be the half integers such
that l—m e Z and put

1

Max{ L], [ml=n+1,  Min{i],[m)=p—.

From the second formula in (A), using (2) in lemma 1, lemma 3
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and 4 we can deduce the following (B) by integration by parts.
B)  4[Im@—m")|T,,(f)

oo (*2%
=2?§§ S {e7"¥ cos me+ '™ cos lp} F'iV (aym,, HH,(H;+ HY))dtde

0 J—2%

N Szx Szx {cos 16 cos mo+ cosmb eos lp} ' (ugm,,, H,H,(Hi— H?))d0de

—ax,) —2%

+2Yja (coslo+ cosmoN T P (m,, Hy(Hi-+ H?)) + 1K (mq, H(H + H})}d p

+ 2S2" (1 cos mo+m? cos lp){J #(m,, Hy)-+iK (m,, H)}de+C

—ar
where,
J7 (1, D)=lim (F}(u.m,, D)~ Ff(u_m,, D)
elo
- ( - 1)2m [F;Z)(uzﬂ—smw D) - Fj(‘z)(u—n+smtpv D):I }’
Kf(m¢7 D)': lim Ff(‘l)(a’ﬁm(or D)’
g0

for any differential operator D on A4, and C? is the constant with
the following property,
Cr=Cs

for all half integers 7, s such as r—se Z. We compare the order of
each term in (B) when [ intends to infinity under certain conditions.
Then, using lemma 1 and Theorem 1, we can show from Riemann-
Lebesque theorem that last three terms on the right hand side in
(B) must be all zero.

Since H,H,(H;+ H})=16'd(r,), HH,(H:— H})=6'(r,), we get (2)
in Theorem.

3. Now we shall give a brief outline of the main steps in the
determination of the Plancherel measure for G.

If we sum up each term in (2) of Theorem with respect to I, m,
then we have the following formulas (1), (2) and (3).

(1) >0 =) | T, u(f)

2l,2m,l—m€

=8 51 (nt)(p— 1 )t PYn—p+ DT0(F)

n2zp21l

2y = ﬁ {611 cos mo+ 1™ cos lp} F'(aum,, 8(,))dtde
2l,2m,l—m€E€ZJ0

—2x
S.»Szx et/2+6t/2_26—(k+’})t

o etlt — gt

cos moF' P (am,, 8(x,))dtde

=4 3 lim
>

m>1 k—o JO
2m=0(mod 2)

oo (*27x __p—k
+8 = limg S Sl meF 0 (a,m,, 0(r,))dtdp
>0

m k=00 JO
2m=1(mod 2)

=4S:coth t/2{ s S" cos (n+ %)goF}"(atm(,, 6(77:1))dgo}dt

>0 —2r
2n=1(mod 2)

-I-4S:cosech t/2{ s S cos (n+%)goF}”(a¢m¢, 6(7r1))olgo}dt.

n20 —27
2n=0(mod 2)
In the above deduction, we made use of lemma 1 and the fact that
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Sm F®(am,, 8(r,))dp=0 and the following.
—2x
Lemma 5. %F}”(atmw, d(m,)) is extended to a continuous function

with the compact support on A,.
This lemma is an immediate consequence of lemma 1 and lemma 4.
In the following, lemma 1 is used, over again.

2z 2%
P S S {cos 10 cos mo-+ cos mé cos lp} P (ugm,, 8(,)d0dy
2l,2m,l—me€Z J—2x

—2%

=8 MS% cos 10 cos meF £ (ugmy,, 8(r,))d0de

2l=2m=1(mod2) SO 0

+8 e Zo}( - SMSM cos 10 cos moF 2 (ugm,, 8(r,))dode
=2m=0(mod2

0Jo

=s2e{ lim Ffuem,, 0+ lim o ugm, A} (wom, e A)
»9)—10,0

(0,¢)—(0,0)
=32n"c{ f1(e) + f_(e)}=32x’¢cfe),
where

f+<g>=§f<g>+f(vg>

_1 (=0 0
fo=Ltr@—fo  torv=("7 7).

From (1), (2), (3) and Theorem, we have;
(4) 4w x6of@=4 3 (nt2)(p—L)m+pXn—p+DTou(s)

n>p>1 2

+ choth t/2{ 3 6“&27' cos <n+l>goF}”(atm¢, O(nl))dgo}dt
0 an=1(m0dz) - 2

+ Smcosech t/2{ 3 6482” cos (n-l— %)goF}”(atmw 8(7:,))dgo}dt.«
]

n>0 —2x
2n=0(mod2)

From (1) in Theorem, we get

(5) 2 u(n+-§->[(n+%)2+v2]m,,(f)

n>0
2n=1(mod2)

=§°°sin vt{ = 645” cos (n-l——;—)goF}”(atm(,,, a(ﬂl))dgo}dt,
[ n>0 —27
2n=1(mod2)

: 3 o D)oo
27=0(mod2)
= S: sin vt{ M 64r

7n2>0
2n=0(mod2)

cos <n+ %)goF;n(a,mw 8(7r1))dgo}dt.

—2%

From the classical theory of Fourier transform, using lemma 5,.
we can finally derive the following formula from (4), (5).
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1x6Tef(e)=2 33 (@n+ I)S:UW( f)[(n + -;_)+ v”]vth(n(v S d))dy

+§1 (2n+1) ”2%1 Cp—1)(n+p)(n—p+1)T,,(f).

Let d™%? be the formal degree of T™%? (see [1(c)]). From
Remark 5.2 in [3] (p. 431), we have
dmo?=2n+1)2p—1)(n+ p)(n—p+1)/167?,
under the normalization of the Haar measure of G that is introduced

in [3]. Hence, if we fix such normalization, we have c=% from

the uniqueness of the Plancherel measure.

References

[1] Harish Chandra:

(a) Trans. Amer. Math. Soc., 76, 485-528 (1954).

(b) Trans. Amer. Math. Soc., 83, 98-163 (1956).

(¢) Amer. Jour. Math., 78, 564-628 (1956).

(d) Amer. Jour. Math., 79, 193-257, 653-686 (1957).

(e) Amer. Jour. Math., 79, 733-760 (1957).

(f) Bull. Amer. Math. Soc., 69, 117-123 (1963).
[2] M. Sugiura: Jour. Math. Soc. Japan, 11, 374-434 (1959).
[3] R. Takahashi: Bull. Soc. Math. France, 91, 289-433 (1963).



