35. A Note on Countable-dimensional Metric Spaces

By Keiô NAGAMI and J. H. ROBERTS (Comm. by Kinjirô KUNUGI, M.J.A., Feb. 12, 1965)

This paper is a supplementary note to the characterization of countable-dimensional metric spaces by J. Nagata [2]. A space is *countable-dimensional* if it is the countable sum of zero-dimensional (in the sense of the covering dimension) subsets. A space is *strongly countable-dimensional* if it is the countable sum of finite dimensional closed subsets. Now Nagata has characterized these two classes of infinite dimensional metric spaces as follows:

Theorem A [2, Theorem 2.3]. A metric space is countabledimensional if and only if for every collection $\{U_{\alpha}: \alpha < \tau\}$ of open sets and every collection $\{F_{\alpha}: \alpha < \tau\}$ of closed sets such that $F_{\alpha} \subset U_{\alpha}, \alpha < \tau$, and such that $\{U_{\beta}: \beta < \alpha\}$ is locally finite for every $\alpha < \tau$, there exists a collection of open sets $V_{\alpha}, \alpha < \tau$, satisfying

i) $F_{\alpha} \subset V_{\alpha} \subset U_{\alpha}, \ \alpha < \tau$,

ii) order $(x, B(\mathfrak{V})) < \infty$ for every $x \in X$, where $\mathfrak{V} = \{V_{\alpha}: \alpha < \tau\}$ and $B(\mathfrak{V}) = \{B(V_{\alpha}) = \overline{V}_{\alpha} - V_{\alpha}: \alpha < \tau\}$.

Theorem B [2, Theorem 5.3]. A metric space X is strongly countable-dimensional if and only if there exists a sequence $\mathfrak{U}_1 > \mathfrak{U}_2 > \mathfrak{U}_2 > \mathfrak{U}_3 > \cdots$ of open coverings \mathfrak{U}_i of X such that

i) for $x \in X$, {St (x, \mathfrak{U}_i) : $i=1,2,\cdots$ } is a local base of x,

ii) for $x \in X$, sup order $(x, \mathfrak{U}_i) < \infty$.

Our supplementary theorems to these are as follows:

Theorem 1. A metric space X is countable-dimensional if and only if for every sequence of pairs of disjoint closed sets C_1 , C_1' ; C_2 , C_2' ;..., there exist separating closed sets B_i between C_i and C_i' , i=1,2,..., such that $\{B_i: i=1,2,...\}$ is point-finite.

The only if part of this theorem is a special case of Nagata [2, Lemma 2.1].

Theorem 2. A metric space X is strongly countable-dimensional if and only if there exists a sequence $\mathfrak{U}_1 > \mathfrak{U}_2 > \cdots$ of open coverings \mathfrak{U}_j of X such that

i) for $x \in X$, {St(x, U_i^4): $i=1,2,\cdots$ } is a local base of x,

ii) for $x \in X$, sup order $(x, \mathfrak{U}_i) < \infty$.

To prove Theorem 2 we need the following theorem for finite dimensional spaces.

This research was supported in part by the National Science Foundation (U.S.A.) Grant GF-2065.

Theorem 3. A metric space X has dim $X \leq n$ if there exists a sequence $\mathfrak{U}_1 > \mathfrak{U}_2 > \cdots$ of open coverings \mathfrak{U}_i of X such that

i) for $x \in X$, {St(x, \mathfrak{U}_i^{4}): $i=1,2,\cdots$ } is a local base of x,

ii) order $\mathfrak{U}_i \leq n+1$.

This is a generalization of Petr Vopěnka's theorem [3]: A metric space X has dim $X \leq n$ if there exists a sequence $\mathfrak{U}_1 > \mathfrak{U}_2 > \cdots$ of open coverings \mathfrak{U}_i of X such that i) lim mesh $\mathfrak{U}_i=0$, ii) for every *i*, order $\mathfrak{U}_i \leq n+1$.

Let K_{ω} be the subset of Hilbert cube which consists of all points $x = (x_1, x_2, \dots)$ such that $x_i \neq 0$ for at most a finite number of values of i. Then K_{ω} is evidently strongly countable-dimensional. Nagata [2, Corollary 5.5] showed that K_{ω} is universal for the class of all strongly countable-dimensional, separable metric spaces. Now K_{ω} has the following property.

Theorem 4. K_{ω} has no metric completion which is even countable-dimensional.

It has been stated that E. Sklyarenko proved the non-existence of a countable-dimensional metric compactification of $K_{\rm ex}$.

Our final result is as follows.

Theorem 5. Let X be a countable-dimensional, compact metric space with dim $X = \infty$. Then for any non-negative integer n there exists a closed subset F_n of X with dim $F_n = n$.

To prove Theorem 1 we need the following characterization theorem which is a very slight modification of a theorem due to Nagata [2, Theorem 2.2].

Theorem C. A metric space X is countable-dimensional if and only if there exists a σ -locally finite open base \mathfrak{V} such that $B(\mathfrak{V})$ is point-finite.

Proof of Theorem 1. Suppose the condition is satisfied. For any positive integer *i* there exists an open covering $\mathfrak{U}_i = \bigcup_{i=1}^{i} \mathfrak{U}_{ii}$ $\mathfrak{U}_{ij} = \{ U_{lpha} : \ lpha \in A_{ij} \}, \ ext{of} \ X \ ext{and} \ ext{a} \ ext{closed} \ ext{covering} \ \mathfrak{F}_i = igcup_{ij} \ \mathfrak{F}_{ij}, \ \mathfrak{F}_{ij} =$ $\{F_{\alpha}: \alpha \in A_{ij}\}$, such that

i) mesh $\mathfrak{U}_i < 1/i$,

ii) $F_{\alpha} \subset U_{\alpha}$ for every $\alpha \in \bigcup_{j=1}^{\infty} A_{ij}$, iii) every \mathfrak{U}_{ij} is discrete.

Write $U_{ij} = \bigcup \{ U_{\alpha} : \alpha \in A_{ij} \}$ and $F_{ij} = \bigcup \{ F_{\alpha} : \alpha \in A_{ij} \}$. Then there exist open sets V_{ij} , $i, j = 1, 2, \cdots$, such that

i) $F_{ij} \subset V_{ij} \subset \overline{V}_{ij} \subset U_{ij}$ for every *i* and *j*,

ii) {B(V_{ij}): $i, j = 1, 2, \dots$ } is point-finite.

For every $\alpha \in A_{ij}$, set $V_{\alpha} = V_{ij} \cap U_{\alpha}$. Then $\mathfrak{V} = \{V_{\alpha}: \alpha \in \bigcup A_{ij}\}$ is a σ -discrete open base of X such that B(\mathfrak{B}) is point-finite. By Theorem C, X is countable-dimensional.

Proof of Theorem 3. Let $\mathfrak{U}_{\alpha}: \alpha \in A_i$, $i=1,2,\cdots$, be open coverings of X which satisfy the condition of the theorem. Let $f_i^{i+1}: A_{i+1} \rightarrow A_i$ be a function such that $f_i^{i+1}(\alpha) = \beta$ yields $U_{\alpha} \subset U_{\beta}$. For each pair i > j let $f_j^i = f_j^{j+1} \cdots f_{i-1}^i$ and f_i^i the identity mapping. Let $\mathfrak{G} = \{G_1, \cdots, G_m\}$ be an arbitrary finite open covering of X. Set $X_i = \bigcup \{U_{\alpha}: \alpha \in A_i, \operatorname{St}(U_{\alpha}, \mathfrak{U}_i) \text{ refines } \mathfrak{G}\}.$

Then by the condition i) $\{X_1, X_2, \dots\}$ is an open covering of X. Set $X_0 = \phi$. Set

$$\begin{array}{l} B_i = \{ \alpha: \ \alpha \in A_i, \ U_{\alpha} \cap X_i \neq \phi \}, \\ C_i = \{ \alpha: \ \alpha \in B_i, \ U_{\alpha} \cap (\bigcup_{j < i} X_j) = \phi \}, \\ D_j = \{ \alpha: \ \alpha \in B_i, \ U_{\alpha} \cap (\bigcup_{i < i} X_j) \neq \phi \}. \end{array}$$

Then $B_1 = C_1$ and every B_i is the disjoint sum of C_i and D_i . For any i and any $\alpha \in C_i$ let

$$V_{\alpha} = (U_{\alpha} \cap X_{i}) \cup (\cup \{U_{\beta} \cap X_{j}: f_{i}^{j}(\beta) = \alpha, \beta \in D_{j}, j > i\}).$$

Let us show that $\mathfrak{V} = \{V_{\alpha}: \alpha \in \bigcup_{j=1} C_i\}$ is an open covering of X such that \mathfrak{V} refines \mathfrak{G} and order $\mathfrak{V} \leq n+1$, which will prove dim $X \leq n$.

Let x be an arbitrary point of X. Then there exists i with $x \in X_i$. Take $\alpha \in B_i$ such that $x \in U_{\alpha}$. When $\alpha \in C_i$, then $x \in U_{\alpha} \cap X_i \subset V_{\alpha}$. When $\alpha \in D_i$, then there exists j < i such that $\beta = f_j^i(\alpha) \in C_i$ since $B_1 = C_1$. Then $x \in U_{\alpha} \cap X_i \subset V_{\beta} \in \mathfrak{B}$. Thus \mathfrak{B} is an open covering.

Let *i* be an arbitrary integer and α an arbitrary index in C_i . It is clear that $U_{\alpha} \cap X_i \subset V_{\alpha} \subset U_{\alpha}$. There exists $\beta \in A_i$ such that $U_{\beta} \cap U_{\alpha} \cap X_i \neq \phi$ and $\operatorname{St}(U_{\beta}, \mathfrak{U}_i)$ refines \mathfrak{G} . Thus V_{α} refines \mathfrak{G} and hence \mathfrak{V} refines \mathfrak{G} .

To prove order $\mathfrak{V} \leq n+1$ take an arbitrary positive integer *i*. Then $\{V_{\alpha} \cap (X_i - \bigcup_{j < i} X_j): \alpha \in \bigcup_{k=1}^{\infty} C_k\} = \{U_{\alpha} \cap X_i, (\cup \{U_{\beta}: \beta \in D_i, f_k^i(\beta) = \gamma\}) \cap (X_i - \bigcup_{j < i} X_j): \alpha \in C_i, \gamma \in C_k, k < i\}$ and the order of the last term is at most order \mathfrak{U}_i . Hence order $\mathfrak{V} \wedge (X_i - \bigcup_{j < i} X_j) \leq n+1$ and hence order $\mathfrak{V} \leq n+1$.

Proof of Theorem 2. Suppose the condition is satisfied. Let $X_i = \{\sup_j \text{ order } (x, \mathfrak{U}_j) \leq i\}$. Then X_i is closed and $X = \bigcup_{i=1}^{\infty} X_i$. If we consider the sequence of open coverings $\mathfrak{U}_j \wedge X_i$, $j = 1, 2, \cdots$, of X_i , we have dim $X_i \leq i-1$ by Theorem 3.

Proof of Theorem 4. Throughout the proof the points in K_{ω} are represented by their coordinates in the Hilbert cube: $K_{\omega} = \{(x_1, \dots, x_i, 0, 0, \dots): |x_j| \leq 1/j, j=1, \dots, i, i=1,2,\dots\}$. Let (K_{ω}^*, ρ) be an arbitrary metric completion, with the metric ρ , of K_{ω} . If b_1, b_2, \dots are positive numbers, we set

$$J_i = \{ (x_1, \dots, x_i, 0, 0, \dots): 0 \le x_j \le b_j, j = 1, \dots, i \}, \\ L_i = \{ (x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots): 0 \le x_j \le b_j, j \ne i \}, \end{cases}$$

 $L_i' = \{(x_1, \dots, x_{i-1}, b_i, x_{i+1}, \dots): 0 \leq x_j \leq b_j, j \neq i\}.$ Then by induction we can find b_i with $0 < b_i \leq 1/i$, $i=1,2,\dots$, which satisfy the following conditions:

i) $J_{i+1} \subset S_{1/2^{i}}(J_{i}) = \{x: \rho(x, J_{i}) < 1/2^{i}\}, i=1,2,\cdots$

ii) For every i and j with $j \ge i$, $L_i \cap J_{j+1} \subset \mathbf{S}_{a_i/2^j}(L_i \cap J_j)$ and $L_i' \cap J_{j+1} \subset \mathbf{S}_{a_i/2^j}(L_i' \cap J_j)$, where $a_i = \rho(L_i \cap J_i, L_i' \cap J_i)/5$.

If we put $K = \bigcup_{i=1}^{\omega} J_i$, then K is totally bounded. Therefore \overline{K} is a compact subset of K_{∞}^* . By our construction $\rho(L_i \cap K, L_i' \cap K)$ is positive for every *i*. Hence $\overline{L_1 \cap K}$, $\overline{L_1' \cap K}$; $\overline{L_2 \cap K}$, $\overline{L_2' \cap K}$; \cdots is a sequence of disjoint closed pairs of \overline{K} . Assume that \overline{K} is countable-dimensional. Then there exists a sequence of closed sets B_i of \overline{K} separating $\overline{L_i \cap K}$ from $\overline{L_i' \cap K}$, $i=1,2,\cdots$, with $\bigcap_{i=1}^{\infty} B_i = \phi$. Since \overline{K} is compact, there exists $n < \infty$ with $\bigcap_{i=1}^{n} B_i = \phi$. On the other hand $\bigcap_{i=1}^{n} (B_i \cap J_n) \neq \phi$, because J_n is a topological *n*-cell and the B_i 's separate pairs of opposite faces, which is a contradiction. Therefore \overline{K} is not countable-dimensional and hence K_{∞}^* is not countable-dimensional.

Proof of Theorem 5. By [1, D, p. 51], X has a small transfinite inductive dimension α . It is clear that α is an infinite ordinal. Now it can easily be proved by transfinite induction that for each $\beta < \alpha$ there exists a closed subset F_{β} of X whose small transfinite inductive dimension is β . Then F_0 , F_1 , F_2 ,... are what we want. Ehime University and Duke University

References

- [1] Hurewicz-Wallman: Dimension Theory. Princeton (1941).
- [2] J. Nagata: On the countable sum of zero-dimensional metric spaces. Fund. Math., 48, 1-14 (1960).
- [3] Petr Vopěnka: Remark on the dimension of metric spaces. Czechoslovak Math. J., 84, 519-522 (1959).