
150 FVol. 41,

34. Some Applications of the Functional.Representations
of Normal Operators in Hilbert Spaces. XV

By Sakuji ITOUE
Faculty of Education, Kumamoto University

(Comm. by Kinjir5 KUNUGL .J.A., Feb. 12, 1965)

Let N., D.(j- 1, 2, 3, ..., n), {2}:x,m,..., fi, f, fi’, f, g.a, ga, and
T(2) be the same notations as those defined in Part XIII (cf. Proc.
Japan Acad., Vol. 40, No. 7, 492-493 (1964)), and let R(2) be the
ordinary part of T(2). Then

T(2)-R(2)+ ((I-N)-(fi+),

(+fi))+ ((2I-N)-g, g),= =
and T(2) possesses the properties (i), (ii), and (iii) described in Part
XIII. Analytically speaking, the first principal part of T(2) is given by

) ,A)-((-N - c)
: :: (_)’

where if -="’-, +1-+="’-, and so on, then
CV) means the sum

= (-)
C1) (mlT1) (m1) (m2)

+ +...= + +...,
(--) (-- +) (-- ) (-- )

as will be seen by the definition of c) in the above-mentioned paper;
and in addition, the second principal part of T(2) is given by

N d(K(1)(z), fi)+ N 1 d(K(i)(z)gi= ,u., (-z) : : . (-z)’
where g denotes the set of all those accumulation points of {2}=,,,...
which do not belong to {2} itself and {K()(z)} is the complex spec-
tral family associated with the bounded normal operator N(j=
1, 2, 3,.-., n). These facts are clear from the respective definitions
of the notations fi, A, A%, fi%, ga, g,, c), N, and D.

Since, by definition, {2} is an arbitrarily prescribed bounded set
of denumerably infinite complex numbers, we may and do suppose here
that it is everywhere dense on an open rectifiable Jordan curve F;
and as a special case, we consider the function (2) defined by

(A) T()-R()+ Z ((-N)-, A)+ Z Z ((Z- N;)-’g;,,

Then it is obvious that every is a pole of ()in the sense of the
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functional analysis (but not in the sense of the classical theory of
functions) and that every point on F is a singularity of T(2). In
this paper we shall investigate the question as to whether Picard’s
theorem for essential singularities in the classical theory of functions
can be valid for T(2) in a suitably small neighbourhood of any point
on F and shall discuss the number of Picard’s exceptional values
for a suitably small domain containing F in the interior of itself.

Theorem 41. Let {,}=,,,... be a bounded set of denumerably
infinite points which are everywhere dense on an open rectifiable
Jordan curve F in the complex 2-plane; let T(2) be the function
defined by (A); let be an arbitrarily given point on F; let

positive number less than the distance from $ to the set [ D#; let

be the domain {2: 2- I< $}; and let z/ be the domain )-( Y F).
Then in / T(2) assumes every finite value, with the possible exception
of at most two finite values, an infinite number of times.

Proof. Let A and B denote the extremities of F; let M be the
middle point of the segment A of F; and let M. be the middle point
of the segment M of F. By repeating this procedure we obtain the
infinite sequence of points M, (n-l, 2, 3,...), tending to $ on the
segment A’ of F; and similarly we can assign another infinite sequence
of points M’, (n-1, 2, 3, ...), tending to on the segment B$ of F.
On the assumption that/9 is any poitive integer greater than a suitably
large positive integer G, we now denote by 2 the point with the
least value of indices in the set { }=,+,+s,... AM and similarly
by 2s the point with the least value of indices in the set
{,}=,+,+,...f]Ms. By repeating this procedure we have an
infinite sequence of points {2}=,s,,... tending to $ on the segment

A of F. In the same manner we can assign another infinite sequence
of points }=,,,. tending to $ on the segment B$ of F. We next

consider in connection with Wla/ e ffl the element

where ,m is such an incomplete orthonormal system in theI J=l,2,,...

complete and separable Hilbert space 2j of infinite dimension as was
defined at the beginning of Part XIII and denotes the subspace
determined by {0()}, and then construct the infinite sequence of auxiliary
functions

(B) (2)-R(2)+ , ((2I-.-r(), fi,)

/ , ((,I-Nj)-’g,, g.), (V=G+i, G+2, G/3, ...),
=. t=i

for the function T(2) given by (A).
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Suppose now that E is an arbitrary closed domain with simple
closed boundary in A and that 2 is a point belonging" to E,. Then

o=1.

--6< l[ (2I-N)- II" II ,.-’ II II f/ II
(p-G+ 1, G+2, G+3, ...),

where

Since sup ]I(,I-N)-I[’ is finite because of the fact that any

point 2 in E, is a point of the resolvent set of every N by virtue
of the definition of E**, and since , - ]< oo, by choosing in advance

G sufficiently large for an arbitrarily given small positive e we can
find from the just established inequality that T(2)-T(2)[<e holds
for all 2 e E, and every positive integer p greater than G and hence
that the infinite sequence of functions {T()}+x regular in E,
converges uniformly to T()in E** itself. Consequently, according to
a well-known theorem based on the Rouch6 theorem, in the interior
of E, the number of zero-points of every T() with G’p< for
an appropriately chosen positive integer G’ greater than G equals that
of zero-points of (). As a result, it is easily found that for any
finite complex number w and a suitably large positive integer P, every
T() with Pp< and T() have in the interior of E** the same
number (inclusive of 0) of w-points. 0n the other hand, since every
T(2) with Pp< is meromorphic in the domain ’{2: 0<[ 2- [<}
and has denumerably infinite points {2}=,,,...,_ and {2,, 2;}=,m,...
tending to as its poles in the sense of the classical theory of functions,
it assumes in ’ every value, with the possible exception of at
most two values, an infinite number of times by virtue of Picard’s
theorem in the wider sense; and here the exceptional values in the
sense of Picard are finite, and is the unique accumulation point of
w-points of T(2)on the assumption that w is not its exceptional
value. In addition, if we denote by A an arbitrary bounded domain

which contains in the interior of itself but not any point of D,
=1

then T(2) has every point on as its singularity and is regular in
A--(A ), as can be seen from its expression (A) and the hypothesis
that both fi and are elements consisting of all 9x. Hence any
w-point of (2) in ’ lies on A** but not on . Choosing now an
arbitrary not exceptional value for one of the functions T(2)with
Pp< and supposing, contrary to what we wish to prove, that
the number of w-points of T(2) is finite in A,, it follows that in
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the number of o)-points of any function belonging to the family
{T(2)}e would be finite. In fact, the number of m-points of any
T(2) (p>___P) in coincides with that of o)-points of T(2) in z/, as
will be found from the fact that the respective numbers of w-points
of these two functions are identical in the interior of an arbitrary
closed domain E contained in the open domain z/. Accordingly we
attain to the result that denumerably infinite w-points of any ()
(p>__P) would lie on F. On the other hand, since

= u (.-z)
1 d(K()(z)(fi A)) ),J (-z)

and since [(K()(z)(-)),){,V=,,,,..., a12 "}} II 0,
irrespective of both of I and z, as p, in the entire complex l-plane
(inclusive of the point at infinity) T(1) is the limit function of the
family {(1)}e. Since, moreover, every point on F is a singularity
of T(t), the above result to which we attained is absurd. Consequently
the supposition that the number of o-points of T(1) is finite in
must be rejected.

The theorem has thus been proved.
Remark. More generally, the result of Theorem 41 holds for the

case where the set {I} is everywhere dense on a finite number of
open or closed rectifiable Jordan curves, as will be seen by minor
modifications of the method used above.

Theorem 42. Let T(1), F, $, , and be the same notations as
those defined in the statement of Theorem 41, and an open domain
covered by as ranges over F. Then the number of finite
exceptional values of T(1) for is at most two.

Proof. Suppose that with respect to , T(1) has a finite excep-
tional value w associated with and that is an arbitrary point,
not $, on F . Then, with respect to an open domain defined
for in the same way as was defined for $, w is also an exceptional
value associated with of T(1), so that w is an exceptional value
of (I)for the extended domain U. By iterating this procedure
finite times we can attain to the result that is an exceptional
value of T(1) for such extended open domain as was defined in the
statement of the present theorem. In addition, since, by Theorem 41,
(I) has at most two finite exceptional values for (even if they
exist), it is at once obvious that in respect of , the number of finite
exceptional values of T(1) in the sense of Picard cannot exceed two.

Thus the proof of theorem is complete.
Remark. With small modifications the same technique may be
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used to show that Theorem 42 is also extended to the more general
case stated in the preceding remark.

Correction to Sakuji Inoue: "Some Applications of the Functional-
Representations of Normal Operators in Hilbert Spaces. XII" (Proc.
Japan Acad., 40, 487-491 (1964)).

Page 489, line 1: For "... + r()@Lx", read "... /

(),)(L,(x)


