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123. Non-negative Integer Valued Functions on
Commutative Groups. I

By R. ]IGGS, Morio SASAKI, and Takayuki TAMURA
University of British Columbia, Iwate University

and University of California, Davis

(Comm. by Kinjir5 KUNU(I, M.Z.A., Sept. 13, 1965)

T. Tamura, one of the authors, introduced "an indexed group"
which means a commutative group G with a non-negative integer
valued function I(x, y) defined on G G and satisfying the ollowing
conditions:

(A) I(x, y)- I(y, x)
(B) I(x, y)/ I(xy, z)-I(x, yz)/ I(y, z) for any x, y, z e G
(C) For any x e G, there is a positive integer m (depending on

x) such that I(x, x)>O.
(D) I(e, e)-i where e is the identity of G.
It was shown in _1 that I(e, x)-i or all x e G or every indexed

group G. Consequently if G is periodic, condition (C)is satisfied
whenever conditions (A), (B), and (D) are satisfied.

Given an indexed group G, there is a commutative archimedean
cancellative semigroup without idempotent such that the fundamental
group o which is isomorphic to the group G (Theorem 4 in [1 or
Exercise 4.3, 8. p. 136 in [2).

The purpose of this paper, as one of the series, is to show how
all /-functions on a finitely generated commutative group G may be
obtained.

1. The Case where G is a Finite Cyclic Group. Suppose G is
a cyclic group of order n generated by a. Let E(i, j, k) denote the
equation obtained by setting x, y, z as a, a, a respectively in (B),
and let E’(i, j, k) be the equation obtained by exchanging the two
sides of E(i, , k) with each other.

Lemma 1. E(m, p, q), mO, p, q integers, is expressed by equa-
tions of type E(1, p, q).

Proof. If m-l, it is obvious. Let m>___2, then E(m,p, q) is
obtained by adding E(m-1, 1, p), E’(m-1, 1, p+q), E(m-1, p+l, q)
and E(1, p, q). By induction we get this lemma.

For integers i(>__0), m, n we define

Ira, hi,- I(a, a’+) I(a, a"-), if i >0
k=0 k=0

=0 if i-0
Adding then, E(1, 1, j), E(1, 2, 3"), "", E(1, i-1, 3"), we obtain
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Lemm 2.
I(a, aJ)-I(a, a+-1)/[3", i-1]_1 for i>__l.

Conversely if I(a, a), for all k, are given and if I(a, a) is de-
fined in this manner, we can easily prove that the function I
satisfies (B).

Theorem 1. If G is a cyclic group of order n, $he function
values I(a, ak), k-l, ..., n-l, are independent up to relative size
considerations and every other function value can be determined
from $hese n-1 values by $he form in Lemma 2.

Next we shall consider determining the relative sizes of the
"independent" elements I(a, a), k- 1, -, n- 1. The major conditions
are I(a, a)>=O for all i, 3"-1, .--, n-1. We note that

0 <= I(a, a) <= I(a, a) <= I(a, a-)
is sufficient for a solution. In fact, in this case, it follows that or
2<=i<jn--1.

(1.1) i i/j--l<=n, then
i--2

I(a, aY)--I(a, a+-)/, (I(a, aY+k)--I(a, a+))>__0
k=O

since n>j/k>l/k or all k with 0=<_k=<i-2.
(1.2) if i/j-l>n, then we can put i/j-l-n/s, l<__sn-3

and

I(a, a) , I(a, a)/ , I(a, a) , I(a, a)/ , I(a, a)
k=j k=n-l

-I(a, a)+ , (I(a, a/)-I(a, a//))>=l
k=O

since nj+ks+l+k or all k with
If n_< 4, then the following eonditions or I(a, ak), k- 1, -, n- 1,

are obtained easily"
(2.1) the case n- 2, I(a, a)>- 0
(2.2) the case n-3, I(a, a)O, I(a, a)>= max {0, I(a, a)-1}.
(2.3) the case n-4, I(a, a)>-O, I(a, a)>__O

I(a, a) >= max {0, I(a, a)-I(a, a), I(a, a)-1, I(a, a) 1}.
So, hereafter, we assume n>__5. By (A) we may consider the

conditions or I(a, a), k- 1, -.., n- 1 under I(a, a) >-_ 0 or all i, j
such that 2__< i <j n- 1. From Lemma 2 and I(a, a) >-_ O, we get an
inequality

(3) I(a, a+-)>__l, i/j--2_.
Putting here i/j-l-k, k runs through 3, 4,..-,2n-3 and for a
fixed k such that 3_<__k2n-3 all the inequalities (3) are given as
ollows:

(4.1) the case 3 =< k n- 1

I(a,a)>[1, k-1]_, i-2,3,... I k+l]2
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(4.2)

hence

the case k=n

I(a, a’)>__l, n-l_, i-2, 3, ...,
2

I(a, a"-l)>__ [1, n-2]_.+I(,a, a-l)- 1

for all i with 2=<iN

hence
(4.8) the ease k=+, 1NN-g,>

I(a, a+’)l, n+s--l_, i--s+2, s+3, -.-,
2

hence
I(a, a"-) Is+ 1, n-2]_,_+ I(a, a’-) 1

for all/ with s+2<i</n+s+l--
(4.4) the case k-2n-4

I(a, a="-) [1, 2n-5]_, i=n--2,
hence

(4.5)

hence

I(a, a-) >_ I(a, a-) 1.
the case k-2n- 3

I(a, a’-)>_[1, 2n--4]_, i--n--l,

I(a, a-) >_ I(a, a-) i.
Summrizin the above inequalities and I(, )>__0, we have the

following theorem.
Theorem 2. Let G be a cyclic group of order . I(a, a)>=O

for all non-zero integers i, if and only if I(a, a), k-1, ..., n-1,
satisfy the following conditions:

(5.1) In the cases n=2, 3, 4, (2.1), (2.2), (2.3)hold respectively.
(5.2) In the case n>=5,

I(a, a) >=(k) k-- 1, 2, ..., n-- 2

I(a, a-) >__ maxh(n-- 1), h’(O), ’(1), ., ’(n-- 5) max {I(a, a) 1}
where

(k)- max ([-1, k-l-},

and
h’(k) max {[k/ 1, n--2]/ I(a, a++)- 1}.

--b--3

We notice that the types of I(a, a’)which appear in h(k)are all
and the types of I(a, a’) in

max (n-1), ’(0), ..-, ’(n--5), max {I(a,
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are all s < n-- 1.
2. The Case where G is an Infinite Cyclic Group. Let G be

an infinite cyclic group generated by a"

G-{a; m-0, _1, _+2,-..} where a is the identity element of G.
Lemma 3. E(m, p, q), m, p, q integers, is expressed by equations

of type E(1, p, q).
Proo. If m>__l, the lemma is true by Lemma 1. If m-0,

E(0, p, q)reduces to an identity. E(-1, p,q) is obtained by adding
E’(1, -1, p), E(1, -l, pH-q), and E’(1, p-l, q). For m’>=2, E(-m’,
p, q) is obtained by adding E(--m’+ 1, -1, p), E’(-m’-F 1, --1, p-Fq),
E(-m’+ 1, p-l, q), and E(-1, p, q). The lemma ollows by induction.

Lemma 4. For any integer j, it holds that
(6.1) I(a, aJ)--I(a, a+’-l)+[j, i--1]_i if i>-2
(6.2) I(a, a) I(a, a) H- [i H- 1, j-- 1]_1 if i <= 1.
Proof. The ormer is shown in the same way as Lemma 2, the

latter is proved by adding E(1, i, j), E(1, i/ 1, j), -.., E(1, --1, j).
From Lemmas 3 and 4 we have"
Theorem 3. If G is an infinite cyclic group, the function

values I(a, a), k- +_1, +_2,..., are independent up to relative size
considerations and every function value is determined from these
I(a, ak), k-- +_ 1, +_ 2, ....

Moreover we have,
Theorem 4. Let G be an infinite cyclic group. I(a, aJ)>__O

for all non-zero integers i, j and they determine an I-function if
and only if (7.1), (7.2), and (7.3) below are satisfied:

Let
h(k)- max {[1, k--1]}, ( /) max [1, i--k]},

’(-k)- rain {l(a, a-’)+l+[-i-1,
k--2

(7.1) I(a, ak)>__(k), k- 1, 2,
I(a, a-1) >__(- 1)(7.2)

’(-k)>__I(a, a-)>=g(-k), k-l, 2,
(7.3) For any integer s(O) there exists a positive integer t,

such that
Est,, s-i],>__0 if s>_l

Is, st,-1]_,>__0 if s-l.
Proof. Suppose I(a, a)>-_O for all non-zero integers i, 3". By

(A) it suffices to consider I(a, a)>=O in the ollowing cases:
(i) 2ij, (ii) 2=<i and 3"_<_.-1, (iii) ji<=-l.

In each case, from Lemma 4 and I(a, a#)>-_O, we get inequalities
(8.1) I(a, a’+’-)=<[1, i+j--2],_ in (i)
(8.2) I(a, a) >__ [i +j, 0]_ in (ii)



568 R. BIGGS, M. SASAKI, and T. TAUIA [Vol. 41,

(8.3)
If we let

I(a, a+) <= I(a, a-) + 1+ i, 3"-- 1__ in (iii).
k-i+j-1 in (8.1),

I(a, a)>[1, k-1],_ i-2,... [..k-C-1].
if /c--j in (8.2),

I(a, a-)[i-k, 0] i-2, 3, -..;
if k--i--j in (8.a),

I(a, a-)<=I(a, a-)+l+[i,-k-i-1]__,-i-i, ...,
Immediately we have (7.1) and (7.2). By (C) there exists a positive
integer t, such that I(a, a’*s)-l>-_0 for any s and

Thus we have (7.). The eonverse of the theorem is obvious.
3. The Case where is a Direct Product. Suppose that

is the direct product ot two eommutative groups A and B.
G-AB={(a, b); a A, b B}.

Let N(a, b; ., b; , b) denote the equation obtained by setting
g, and as (a, b), (, b), and (a, b) respectively in (B) and let

N’(a, b; , b; , b) be the one obtained by exehanging the two sides
of N(e, b; a, b; a, b) with each other.

Lemma g. All of the
feeg b eqatio of the te(, f; , f; e, b), N(e, b; e, b; , f),
(, b; e, b; , f), N(a, f; , f; , f),
ad f afe the gee of A B fepeeivel.

Proof. Add N’(a, b; e, b; a, f), N’(aa, bb; e, b; , f), N(a, b;
e, b; , f), (, b; e, bb; , f), N’(e, b; e, b; , f), N’(e, b; e, bb;, f), N(e, b; e, b; , f), N(e, bb; e, b; , f), N’(e, b; e, b; e, b),
’(, f; , f; e, bb), N’(e, bb; , f; , f), N(aa, f; a, f; e, bbb),
N(e, bbb; , f; , f), and N(a, f; a, f; a, f). hen we obtain
N(a, b; a, b; a, b).

Lemma 6. o ,
f), f))+ I((e,

+ I((aa, f), (e, bb))- I((a, f), (e, b))- I((a, f), (e, b)).
Proof. Add N’(a, b; , f; e, b), N’(a, f; , f; e, b), and N’(e, b;

e, b; aa, f) .e.d.
Conversely i I((, f), (e, b)), or all a A, b B, are given and

i I((a, b), (, b)) is defined in this manner, we ean easily rove
that the unetion I satisfies (B).

We define I and I as ollows"
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Then we verify that I and I are /-functions defined on A’--{(a, f);
a e A} and B’--{(e, b); b e B} respectively.

Therefore, by Lemmas 5 and 6, we get the following theorem:
Theorem 5. Suppose $ha a direc$ produc$ G--A B of $wo

commutative groups A, B, and $ha$ I-values I for A and I for B
are already given. Then the set IA, of function values I((a, f),
(e, b)), a e A\{e}, b e B\{f}, are independent up to relative size con-
siderations and every other value I((ab), (a, b)) is determined from
I, I, and !, by the form in Lemma 6.

Remark. All elements of I, in Theorem 5 must be chosen so
as to satisfy I((a,. b), (a, b.))>__0 for all (a, b), (a, b), and additionally
(C). For this, how can we choose I((a, f), (e, b)) in advance? The
complete solution, namely the theory corresponding to Theorem 2 or
Theorem 4, is let to the continued series oi this paper.

Let G=A A be the direct product o n commutative
groups A,..-, A. Suppose that /-values I or A, i-l, ..., n are
already given, and consider sets I] o unction values:
I]((a, ..., a._, e, ..., e), (e, ..-, e._, a., e.+, ..-, e.)) 3"=2, .-., n
where

-.., ..., ...,
(e, ..., e_, a., e+, ..., e):/:(e,..., e.)

and e is the identity element of A. Then the union of I’.,j- 2n,,
is a set of I-values independent up to relative size considerations and
every other value is determined from , I,-.., I, I’, .-., I’.

Since every finitely generated commutative group is the direct
product o a finite number o cyclic groups, the results obtained above
can be applied to any finitely generated commutative group. We have
easily the ollowing theorem:

Theorem 6. If a commutative group G has order n, then the
number of "independent" 1-function values for G is n-l.
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