111. On the Rate of Growth of Blaschke Products in the Unit Circle

By Chuji Tanaka
Mathematical Institute, Waseda University, Tokyo
(Comm. by Zyoiti Suetuna, m.J.A., Sept. 13, 1965)

1. Introduction, Let us put

$$
B(z)=\prod_{n=1}^{+\infty} b\left(z, a_{n}\right)
$$

where $b(z, a)=|a| / a \cdot(a-z) /(1-\bar{a} z), S=\sum_{n=1}^{+\infty}\left(1-\left|a_{n}\right|\right)<+\infty$. Then we can find the sequence $\left\{r_{n}\right\}^{*)}$ such that

> (1) $1=r_{1}>r_{2}>r_{3} \cdots \rightarrow \rightarrow 0$
> (2) $\sum_{n=1}^{+\infty} 1 / r_{n}^{2} \cdot\left(1-\left|a_{n}\right|\right)<+\infty$

For the sake of convenience, we introduce some notations:
(1) $D\left(e^{i \varphi}, \vartheta\right)=\left\{z ;\left|\arg \left(1-z e^{-i \varphi}\right)\right| \leqq \vartheta<\pi / 2,\left|z-e^{i \varphi}\right| \leqq \cos \vartheta\right\}$.
(2) $D\left(e^{i \varphi}, r_{1}, r_{2}\right)=\left(\left|z-r_{1} e^{i \varphi}\right| \leqq 1-r_{1}\right) \cap\left(\left|z-r_{2} e^{i \varphi}\right| \geqq 1-r_{2}\right)$, $\left(0<r_{1}<r_{2}<1\right)$.
(3) $\mathscr{D}=\bigcap_{n}\left\{z ; \rho\left(z, a_{n}\right) \geqq R_{n}\right\}$, where $\rho(a, b)$: The non-Euclidean hyperbolic distance between a and $b, R_{n}=\tanh ^{-1} r_{n}(n=1,2, \cdots)$.
(4) $S(\varepsilon)=\sum_{\mid a_{n}-e^{i \varphi_{\mid}<\varepsilon}} 1 / r_{n}^{2} \cdot\left(1-\left|a_{n}\right|\right)$.

Then we can state our theorems as follows:
Theorem 1.

$$
\begin{equation*}
\lim _{\substack{(z) \rightarrow 1 \\ z \in \mathscr{D}}}(1-|z|) \log |1 / B(z)|=0 \tag{1.2}
\end{equation*}
$$

As its immediate consequences, we get following:
Corollary 1.
(1.3) $\lim \left|z-e^{i \varphi}\right| \cdot \log |1 / B(z)|=0$ uniformly as $z \rightarrow e^{i \varphi}$ inside $D\left(e^{i \varphi}, \vartheta\right) \cap \mathscr{D}$.

Corollary 2. If there exists no $\left\{a_{n}\right\}$ in the sector $S: \alpha \leqq$ $\arg \left(1-z e^{-i \varphi}\right) \leqq \beta(-\pi / 2<\alpha<\beta<\pi / 2)$, then $\lim \left|z-e^{i \varphi}\right| \cdot \log |1 / B(z)|=0$ uniformly as $z \rightarrow e^{i \varphi}$ inside the subsector of S.

As an interesting application of Corollary 2, we can establish
Theorem 2. If the sequence $\left\{a_{n}\right\}$ lies on the chord $L: \arg (1-$ $\left.z e^{-i \varphi}\right)=\vartheta(|\vartheta|<\pi / 2)$, then L is Julia- line for $f(z)=B(z) \cdot \exp \{\alpha$. $\left.\left(e^{i \varphi}+z\right) /\left(e^{i \varphi}-z\right)\right\}(\alpha>0)$.

Under additional conditions, we can prove more precise theorems than Theorem 1:

Theorem 3. If $\varlimsup_{\varepsilon \rightarrow+0} S(\varepsilon) / \varepsilon^{2}<+\infty$, then $\lim |B(z)|>0$ as $z \rightarrow e^{i \varphi}$ inside $\mathscr{D} \cap\left(D\left(e^{i \varphi}, \vartheta\right) \cup \stackrel{\varepsilon \rightarrow+0}{D}\left(e^{i \varphi}, r_{1}, r_{2}\right)\right)$.

[^0]Theorem 4. If $\lim _{\varepsilon \rightarrow+0} S(\varepsilon) / \varepsilon^{\alpha}=0 \quad(\alpha>2)$, then $\lim |B(z)|=1$ as $z \rightarrow e^{i \varphi}$ inside $\mathscr{D} \cap\left(\mathscr{D}\left(e^{i \varphi}, \vartheta\right) \cup D\left(e^{i \varphi}, r_{1}, r_{2}\right)\right)$.
2. Lemmas. To prove these theorems, we need some lemmas:

Lemma 1. There exists the sequence $\left\{r_{n}\right\}$ satisfying (1.1).
Proof. Dini's theorem ([1] p. 293) states that, if $\sum_{n=1}^{+\infty} c_{n}$ is a convergent series of positive terms, then $\sum_{n=1}^{+\infty} c_{n} /\left(c_{n}+c_{n+1} \cdots\right)^{\alpha}$ converges when $\alpha<1$, and diverges when $\alpha \geqq 1$. If we put

$$
c_{n}=1-\left|a_{n}\right|, \quad r_{n}=\left(\sum_{k=n}^{+\infty} c_{k} / \sum_{k=1}^{+\infty} c_{k}\right)^{\frac{\alpha}{2}} \quad(0<\alpha<1)
$$

then lemma 1 follows immediately from Dini's theorem.
Lemma 2.
(2.1) $\quad \log |(1-\bar{a} z) /(z-a)|<2(1-|a|)(1-|z|) /|z-a|^{2}$
for $|a|<1,|z|<1$.
Proof. By the inequality: $\log (1+x)<x$ for $x>0$, we have $\log |(1-\bar{a} z) /(z-a)|=1 / 2 \log \left\{1+\left(1-|a|^{2}\right)\left(1-|z|^{2}\right) /|z-a|^{2}\right\}$

$$
<1 / 2 \cdot\left(1-|a|^{2}\right)\left(1-|z|^{2}\right) /|z-a|^{2}
$$

$$
<2(1-|a|)(1-|z|) /|z-a|^{2}
$$

which proves Lemma 2.
Lemma 3. Put $\rho=\left|z-e^{i \varphi}\right|<\varepsilon$.
(1) If $z \in D\left(e^{i \varphi}, \vartheta\right) \cap \mathscr{D}, \varlimsup_{\varepsilon \rightarrow+0} \rho / \varepsilon=\Delta<1$, then

$$
\begin{equation*}
\log |1 / B(z)|<4 S /(1-\Delta)^{2} \cdot \rho / \varepsilon^{2}+4 / \cos \vartheta \cdot S(\varepsilon) / \rho \tag{2.2}
\end{equation*}
$$

for sufficiently small ε.
(2) If $z \in D\left(e^{i \varphi}, r_{1}, r_{2}\right) \cap \mathscr{D}, \overline{\lim }_{\varepsilon \rightarrow+0} \rho / \varepsilon=\Delta<1$, then

$$
\begin{equation*}
\log |1 / B(z)|<2 S /(1-\Delta)^{2} \cdot r_{2} /\left(1-r_{2}\right) \cdot \rho^{2} / \varepsilon^{2}+4\left(1-r_{1}\right) / r_{1} \cdot S(\varepsilon) / \rho^{2} \tag{2.3}
\end{equation*}
$$

for sufficiently small ε.
Proof. If $z \in \mathscr{D}$, then $\rho\left(z, a_{n}\right) \geqq \tanh ^{-1} r_{n}(n \geqq 1)$, i.e. $\mid\left(z-a_{n}\right) /$ $\left(1-\bar{a}_{n} z\right) \mid \geqq r_{n}(n \geqq 1)$, so that

$$
\begin{equation*}
\left|z-a_{n}\right| /(1-|z|)>r_{n} \quad(n \geqq 1) \tag{2.4}
\end{equation*}
$$

Hence, by (2.1)

$$
\begin{equation*}
S_{1}=\sum_{\substack{\left|a_{n}-e^{i \varphi}\right|<\varepsilon \\ z \in \mathscr{D}}} \log \left|\left(1-\bar{a}_{n} z\right) /\left(z-a_{n}\right)\right|<2 S(\varepsilon) \cdot 1 /(1-|z|) \tag{2.5}
\end{equation*}
$$

Similarly

Putting $z=\left(1-\rho e^{i \theta}\right) e^{i \varphi}$, we have easily

$$
\begin{equation*}
1-|z|^{2}=\rho(2 \cos \theta-\rho) \tag{2.7}
\end{equation*}
$$

By (2.5), (2.6), and (2.7)

$$
\begin{equation*}
\log _{\substack{\mid z-e^{i \varphi \varphi} \\ z \in \mathscr{D}}}|1 / B(z)|<2 S /(1-\Delta)^{2} \cdot \rho(2 \cos \theta-\rho) / \varepsilon^{2}+4 S(\varepsilon) / \rho(2 \cos \theta-\rho) \tag{2.8}
\end{equation*}
$$

$$
\begin{aligned}
& <2 S \cdot(1-|z|) /(\varepsilon-\rho)^{2} .
\end{aligned}
$$

for sufficiently small ε.
If $z \in D\left(e^{i \varphi}, \vartheta\right) \cap \mathscr{D}$, then $2 \cos \theta-\rho \geqq \cos \vartheta$, so that by (2.8)

$$
\log _{\substack{(z-e \in i \varphi=p<\varepsilon \\ z \in D(e i \varphi, \vartheta) \cap \mathscr{D}}}^{\log }|1 / B(z)|<4 S /(1-\Delta)^{2} \cdot \rho / \varepsilon^{2}+4 / \cos \vartheta \cdot S(\varepsilon) / \rho
$$

for sufficiently small ε, which proves (2.2).
If $z \in D\left(e^{i \varphi}, r_{1}, r_{2}\right)$, then by simple computations

$$
\rho^{2} \cdot r_{1} /\left(1-r_{1}\right) \leqq \rho(2 \cos \theta-\rho) \leqq \rho^{2} \cdot r_{2} /\left(1-r_{2}\right),
$$

so that by (2.8)
$\underset{\substack{\text { ei } \\ \operatorname{si\varphi }=\rho<\varepsilon \\\left(e^{i}, r_{1}, r_{2}\right) \cap \mathscr{D}}}{\log }|1 / B(z)|<2 S /(1-\Delta)^{2} \cdot r_{2} /\left(1-r_{2}\right) \cdot \rho^{2} / \varepsilon^{2}+4\left(1-r_{1}\right) / r_{1} \cdot S(\varepsilon) / \rho^{2}$
for sufficiently small ε, which proves (2.3)
3. Proofs of Theorems 1-4.

Proof of Theorem 1. By (2.1) and (2.4), if $z \in \mathscr{D}$,

$$
\begin{align*}
& (1-|z|) \log |1 / B(z)|<2 \sum_{n=1}^{+\infty}\left(1-\left|a_{n}\right|\right)\left((1-|z|) /\left|z-a_{n}\right|\right)^{2} \tag{3.1}\\
& \quad<2\left\{\sum_{n=1}^{N}\left(1-\left|a_{n}\right|\right)\left((1-|z|) /\left|z-a_{n}\right|\right)^{2}+\sum_{n=N+1}^{+\infty} 1 / r_{n}^{2} \cdot\left(1-\left|a_{n}\right|\right)\right\},
\end{align*}
$$

N being any fixed integer. For any given $\varepsilon>0$, there exists $N(\varepsilon)$ such that $\sum_{n=N+1}^{+\infty} 1 / r_{n}^{2} \cdot\left(1-\left|a_{n}\right|\right)<\varepsilon$ for $N \geqq N(\varepsilon)$. Hence, by (3.1)

$$
(1-|z|) \log |1 / B(z)|<2\left\{\sum_{n=1}^{N}\left(1-\left|a_{n}\right|\right)\left((1-|z|) /\left|z-a_{n}\right|\right)^{2}+\varepsilon\right\}
$$

for $N \geqq N(\varepsilon)$, so that

$$
0 \leqq \varlimsup_{\substack{|z| \rightarrow 1 \\ z \in \mathscr{D}}}(1-|z|) \log |1 / B(z)| \leqq 2 \varepsilon \text {. }
$$

Letting $\varepsilon \rightarrow+0$, we have $\lim _{\substack{(z \mid \rightarrow 1 \\ z \in \mathscr{D}}}(1-|z|) \log |1 / B(z)|=0$, which proves proves Theorem 1.

Since $\cos \vartheta / 2 \leqq(1-|z|) /\left|z-e^{i \varphi}\right|$ for $z \in D\left(e^{i \varphi}, \vartheta\right)$,

$$
0 \leqq\left|z-e^{i \varphi}\right| \cdot \log |1 / B(z)| \leqq 2 \sec \vartheta \cdot(1-|z|) \cdot \log |1 / B(z)|
$$

for $z \in D\left(e^{i \varphi}, \vartheta\right)$. Hence, Corollary 1 follows immediately from Theorem 1.

If there exists no $\left\{a_{n}\right\}$ in the sector $S:-\pi / 2<\alpha \leqq \arg \left(1-z e^{-i \varphi}\right) \leqq$ $\beta<+\pi / 2$, then by (1.1) (1), the hyperbolic disks : $\rho\left(z, a_{n}\right) \leqq R_{n} n \geqq N$ (N : sufficiently large integer) are not contained in the fixed subsector of S. Therefore Corollary 2 is an immediate consequence of Corollary 1.

Proof of Theorem 2. Without any loss of generality, we can assume that $\varphi=0$. By Corollary 2, $\lim |z-1| \cdot \log |B(z)|=0$ as $z \rightarrow 1$ on the chords : $\arg (1-z)=\vartheta \pm \varepsilon, \varepsilon$ being any positive constant such that $-\pi / 2<\vartheta-\varepsilon<\vartheta+\varepsilon<+\pi / 2$. Hence, for any $\delta>0$,

$$
\begin{equation*}
|B(z)|>\exp \{-\delta /(1-|z|)\} \tag{3.2}
\end{equation*}
$$

for $\arg (1-z)=\vartheta \pm \varepsilon,|1-z| \leqq \Delta(\delta), \Delta(\delta)$ being a constant dependent upon δ. By simple computation,

$$
(1-|z|) /|1-z| \geqq 1 / 2 \cdot \min \{\cos (\vartheta+\varepsilon), \cos (\vartheta-\varepsilon)\}=\delta^{*} / 2
$$

for $\arg (1-z)=\vartheta \pm \varepsilon,|1-z| \leqq \delta^{*}$, so that

$$
\begin{equation*}
\mathscr{R}((1+z) /(1-z))=\left(1-|z|^{2}\right) /|1-z|^{2}>\left(\delta^{*} / 2\right)^{2} \cdot 1 /(1-|z|) . \tag{3.3}
\end{equation*}
$$

By (3.2) and (3.3)

$$
|f(z)|>\exp \left\{1 /(1-|z|) \cdot\left(\alpha \cdot\left(\delta^{*} / 2\right)^{2}-\delta\right)\right\}
$$

for $\arg (1-z)=\vartheta \pm \varepsilon,|1-z| \leqq \min \left(\Delta(\delta), \delta^{*}\right)$. Taking δ so small that $\alpha\left(\delta^{*} / 2\right)^{2}>\delta, w=f(z)$ tends to ∞ as $z \rightarrow 1$ along the chords : $\arg (1-z)=$ $\vartheta \pm \varepsilon$. Since $f\left(a_{n}\right)=0 n \geqq 1$, by Gross-Iversen's theorem ([2] p. 5) the cluster set of $w=f(z)$ at $z=1$ inside the sector $S:|\arg (1-z)-\vartheta| \leqq \varepsilon$ is the whole w-plane and $f(z)$ takes every finite value, except perhaps one, infinitely many times in S. Since ε is arbitrary, the chord L : $\arg (1-z)=\vartheta$ is Julia-line, which proves Theorem 2.

Proof of Theorem 3. If $z \in D\left(e^{i \varphi}, \vartheta\right) \cap \mathscr{D}$, then by Lemma 3 (1), in which we put $\rho=\varepsilon^{2}, \Delta=0$, we have
(3.4) $\quad \varlimsup \log |1 / B(z)| \leqq 4 S+4 / \cos \vartheta \cdot \varlimsup_{\varepsilon \rightarrow+0} S(\varepsilon) / \varepsilon^{2}<+\infty$
as $z \rightarrow e^{i \varphi}$ inside $D\left(e^{i \varphi}, \vartheta\right) \cap \mathscr{D}$.
If $z \in D\left(e^{i \varphi}, r_{1}, r_{2}\right) \cap \mathscr{D}$, then by lemma 3 (2), in which we put $\rho=\varepsilon / 2, \Delta=1 / 2$, we get
(3.5) $\varlimsup \lim \log |1 / B(z)| \leqq 2 S r_{2} /\left(1-r_{2}\right)+16\left(1-r_{1}\right) / r_{1} \cdot \varlimsup_{\varepsilon \rightarrow+0} S(\varepsilon) / \varepsilon^{2}<+\infty$ as $z \rightarrow e^{i \varphi}$ inside $D\left(e^{i \varphi}, r_{1}, r_{2}\right) \cap \mathscr{D}$. By (3.4) and (3.5), Theorem 3 is completely established.

Proof of Theorem 4. If $z \in D\left(e^{i \varphi}, \vartheta\right) \cap \mathscr{D}$, then by Lemma 3 (1), in which we put $\rho=\varepsilon^{\alpha}, \Delta=0$, we obtain

$$
0 \leqq \varlimsup \lim \log |1 / B(z)| \leqq 0 \text {, i.e. } \quad \lim |B(z)|=1
$$

as $z \rightarrow e^{i \varphi}$ inside $D\left(e^{i \varphi}, \vartheta\right) \cap \mathscr{D}$.
If $z \in D\left(e^{i \varphi}, r_{1}, r_{2}\right) \cap \mathscr{D}$, then by Lemma 3 (2), in which we put $\rho=\varepsilon^{\frac{\alpha}{2}}, \Delta=0$, we get

$$
0 \leqq \overline{\lim } \log |1 / B(z)| \leqq 0 \text {, i.e. } \quad \lim |B(z)|=1
$$

as $z \rightarrow e^{i \varphi}$ inside $D\left(e^{i \varphi}, r_{1}, r_{2}\right) \cap \mathscr{D}$. Thus our theorem is completely proved.

References

[1] K. Knopp: Theory and Application of Infinite Series. London and Glasgow (1928).
[2] K. Noshiro: Cluster Sets. Springer, Berlin (1960).

[^0]: *) Vide lemma 1.

