111. On the Rate of Growth of Blaschke Products in the Unit Circle

By Chuji TANAKA

Mathematical Institute, Waseda University, Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Sept. 13, 1965)

1. Introduction. Let us put

$$B(z) = \prod_{n=1}^{+\infty} b(z, a_n),$$

where $b(z, a) = |a|/a \cdot (a-z)/(1-\overline{a}z)$, $S = \sum_{n=1}^{+\infty} (1-|a_n|) < +\infty$. Then we can find the sequence $\{r_n\}^{*}$ such that

(1.1)
$$(11) \quad \begin{array}{c} (1) \quad 1 = r_1 > r_2 > r_3 \cdots \to 0, \\ (2) \quad \sum_{n=1}^{+\infty} 1/r_n^2 \cdot (1 - |a_n|) < +\infty. \end{array}$$

For the sake of convenience, we introduce some notations:

- $(1) \quad D(e^{i\varphi},\vartheta) = \{z; |\arg(1-ze^{-i\varphi})| \leq \vartheta < \pi/2, |z-e^{i\varphi}| \leq \cos \vartheta \}.$
- (2) $D(e^{i\varphi}, r_1, r_2) = (|z r_1 e^{i\varphi}| \le 1 r_1) \cap (|z r_2 e^{i\varphi}| \ge 1 r_2),$ (0 < r_1 < r_2 < 1).
- (3) $\mathscr{D} = \bigcap_{n} \{z; \rho(z, a_n) \ge R_n\}$, where $\rho(a, b)$: The non-Euclidean hyperbolic distance between a and b, $R_n = \tanh^{-1} r_n$ $(n=1, 2, \cdots)$.
- $(4) \quad S(\varepsilon) = \sum_{|a_n e^{i\varphi}| < \varepsilon} 1/r_n^2 \cdot (1 |a_n|).$

Then we can state our theorems as follows: Theorem 1.

(1.2)
$$\lim_{\substack{||z| \to 1 \\ z \in C}} (1 - |z|) \log |1/B(z)| = 0.$$

As its immediate consequences, we get following: Corollary 1.

(1.3) $\lim |z-e^{i\varphi}| \cdot \log |1/B(z)| = 0$ uniformly as $z \to e^{i\varphi}$ inside $D(e^{i\varphi}, \vartheta) \cap \mathcal{D}$. Corollary 2. If there exists no $\{a_n\}$ in the sector S: $\alpha \leq \arg(1-ze^{-i\varphi}) \leq \beta(-\pi/2 < \alpha < \beta < \pi/2)$, then $\lim |z-e^{i\varphi}| \cdot \log |1/B(z)| = 0$ uniformly as $z \to e^{i\varphi}$ inside the subsector of S.

As an interesting application of Corollary 2, we can establish

Theorem 2. If the sequence $\{a_n\}$ lies on the chord $L: \arg(1-ze^{-i\varphi})=\vartheta \ (|\vartheta|<\pi/2)$, then L is Julia- line for $f(z)=B(z)\cdot\exp\{\alpha\cdot(e^{i\varphi}+z)/(e^{i\varphi}-z)\}\ (\alpha>0)$.

Under additional conditions, we can prove more precise theorems than Theorem 1:

Theorem 3. If $\overline{\lim} S(\varepsilon)/\varepsilon^2 < +\infty$, then $\underline{\lim} |B(z)| > 0$ as $z \to e^{i\varphi}$ inside $\mathcal{D} \cap (D(e^{i\varphi}, \vartheta) \cup D(e^{i\varphi}, r_1, r_2))$.

^{*)} Vide lemma 1.

C. TANAKA

Theorem 4. If $\lim_{\varepsilon \to +0} S(\varepsilon)/\varepsilon^{\alpha} = 0$ ($\alpha > 2$), then $\lim |B(z)| = 1$ as $z \to e^{i\varphi}$ inside $\mathcal{D} \cap (\mathcal{D}(e^{i\varphi}, \vartheta) \cup D(e^{i\varphi}, r_1, r_2))$.

2. Lemmas. To prove these theorems, we need some lemmas: Lemma 1. There exists the sequence $\{r_n\}$ satisfying (1.1).

Proof. Dini's theorem ([1] p. 293) states that, if $\sum_{n=1}^{+\infty} c_n$ is a convergent series of positive terms, then $\sum_{n=1}^{+\infty} c_n/(c_n+c_{n+1}\cdots)^{\alpha}$ converges when $\alpha < 1$, and diverges when $\alpha \ge 1$. If we put

$$c_n = 1 - |a_n|, \quad r_n = \left(\sum_{k=n}^{+\infty} c_k / \sum_{k=1}^{+\infty} c_k\right)^{\alpha} (0 < \alpha < 1),$$

then lemma 1 follows immediately from Dini's theorem. Lemma 2.

$$\begin{array}{c} (2.1) & \log |(1 - \bar{a}z)/(z - a)| < 2(1 - |a|)(1 - |z|)/|z - a|^2 \\ for & |a| < 1, \ |z| < 1. \end{array}$$

Proof. By the inequality: $\log (1+x) < x$ for x > 0, we have $\log |(1-\bar{a}z)/(z-a)| = 1/2 \log \{1+(1-|a|^2)(1-|z|^2)/|z-a|^2\}$ $< 1/2 \cdot (1-|a|^2)(1-|z|^2)/|z-a|^2$ $< 2(1-|a|)(1-|z|)/|z-a|^2$,

which proves Lemma 2.

Lemma 3. Put $\rho = |z - e^{i\varphi}| < \varepsilon$. (1) If $z \in D(e^{i\varphi}, \vartheta) \cap \mathcal{D}$, $\lim_{\varepsilon \to +0} \rho/\varepsilon = \varDelta < 1$, then (2.2) $\log |1/B(z)| < 4S/(1-\varDelta)^2 \cdot \rho/\varepsilon^2 + 4/\cos \vartheta \cdot S(\varepsilon)/\rho$ for sufficiently small ε .

(2) If $z \in D(e^{i\varphi}, r_1, r_2) \cap \mathcal{D}$, $\varlimsup_{\varepsilon \to +0} \rho/\varepsilon = \Delta < 1$, then (2.3) $\log |1/B(z)| < 2S/(1-\Delta)^2 \cdot r_2/(1-r_2) \cdot \rho^2/\varepsilon^2 + 4(1-r_1)/r_1 \cdot S(\varepsilon)/\rho^2$ for sufficiently small ε .

Proof. If $z \in \mathcal{D}$, then $\rho(z, a_n) \ge \tanh^{-1} r_n$ $(n \ge 1)$, i.e. $|(z-a_n)/2|$ $(1-\bar{a}_n z) \mid \geq r_n \quad (n \geq 1)$, so that $|z-a_n|/(1-|z|)>r_n$ $(n\geq 1).$ (2.4)Hence, by (2.1) $S_1 = \sum_{\substack{\left(\mid a_n = e^{i\varphi} \mid < \varepsilon \\ z \in \mathcal{D} \right)}} \log \mid (1 - \overline{a}_n z) / (z - a_n) \mid < 2S(\varepsilon) \cdot 1 / (1 - |z|).$ (2.5)Similarly
$$\begin{split} S_2 &= \sum_{\substack{(|a_n - e^{i\varphi}| \ge \varepsilon \\ |z - e^{i\varphi}| = \rho < \varepsilon \\ <} \log \mid (1 - \overline{a}_n z) / (z - a_n) \mid \\ &< 2 \sum_{|a_n - e^{i\varphi}| \ge \varepsilon} (1 - \mid a_n \mid) \cdot (1 - \mid z \mid) / (\varepsilon - \rho)^2 \end{split}$$
(2.6) $< 2S \cdot (1-|z|)/(\varepsilon-\rho)^2$. Putting $z = (1 - \rho e^{i\theta})e^{i\varphi}$, we have easily (2.7) $1 - |z|^2 = \rho(2\cos\theta - \rho).$ By (2.5), (2.6), and (2.7) $\log \quad |1/B(z)| < 2S/(1-d)^2 \cdot \rho(2\cos\theta - \rho)/\varepsilon^2 + 4S(\varepsilon)/\rho(2\cos\theta - \rho)$ (2.8) $\binom{|z-e^{i\varphi}|=\rho<\varepsilon}{z\in Q}$

for sufficiently small ε . If $z \in D(e^{i\varphi}, \vartheta) \cap \mathcal{D}$, then $2\cos\theta - \rho \ge \cos\vartheta$, so that by (2.8) $\log_{\substack{|z-e^{i\varphi}|=\rho<\varepsilon\\z\in D(e^{i\varphi},\vartheta)\cap\mathcal{D}}} |1/B(z)| < 4S/(1-\varDelta)^2 \cdot \rho/\varepsilon^2 + 4/\cos\vartheta \cdot S(\varepsilon)/\rho$

for sufficiently small ε , which proves (2.2).

If $z \in D(e^{i\varphi}, r_1, r_2)$, then by simple computations

$$ho^2 \cdot r_1/(1-r_1) \leq
ho(2\cos heta -
ho) \leq
ho^2 \cdot r_2/(1-r_2),$$

so that by (2.8)

No. 7]

 $\lim_{\substack{(|z-e^{i\varphi}|=\rho<\varepsilon \\ z\in D(e^{i\varphi},r_1,r_2)\cap \mathcal{G})}} |1/B(z)| < \! 2S/(1-\varDelta)^2 \cdot r_2/(1-r_2) \cdot \rho^2/\varepsilon^2 + 4(1-r_1)/r_1 \cdot S(\varepsilon)/\rho^2$

for sufficiently small ε , which proves (2.3)

3. Proofs of Theorems 1-4.

Proof of Theorem 1. By (2.1) and (2.4), if $z \in \mathcal{D}$,

$$(3.1) \qquad (1-|z|)\log |1/B(z)| < 2\sum_{n=1}^{+\infty} (1-|a_n|)((1-|z|)/|z-a_n|)^2 < 2\Big\{\sum_{n=1}^{N} (1-|a_n|)((1-|z|)/|z-a_n|)^2 + \sum_{n=N+1}^{+\infty} 1/r_n^2 \cdot (1-|a_n|)\Big\},$$

N being any fixed integer. For any given $\varepsilon > 0$, there exists $N(\varepsilon)$ such that $\sum_{n=N+1}^{+\infty} 1/r_n^2 \cdot (1-|a_n|) < \varepsilon$ for $N \ge N(\varepsilon)$. Hence, by (3.1)

$$(1-\mid z \mid) \log \mid 1/B(z) \mid < 2 \left\{ \sum_{n=1}^{N} (1-\mid a_n \mid) ((1-\mid z \mid)/\mid z - a_n \mid)^2 + \epsilon
ight\}$$

for $N \ge N(\varepsilon)$, so that

$$0 \leq \overline{\lim_{\substack{|z| \to 1 \ z \in \mathcal{G}}}} (1 - |z|) \log |1/B(z)| \leq 2\varepsilon.$$

Letting $\varepsilon \to +0$, we have $\lim_{\substack{|z| \to 1 \\ z \in \mathcal{D}}} (1-|z|) \log |1/B(z)| = 0$, which proves

proves Theorem 1.

Since $\cos \vartheta/2 \leq (1-|z|)/|z-e^{i\varphi}|$ for $z \in D(e^{i\varphi}, \vartheta)$,

 $0 \leq |z - e^{i\varphi}| \cdot \log |1/B(z)| \leq 2 \sec \vartheta \cdot (1 - |z|) \cdot \log |1/B(z)|$

for $z \in D(e^{i\varphi}, \vartheta)$. Hence, Corollary 1 follows immediately from Theorem 1.

If there exists no $\{a_n\}$ in the sector $S: -\pi/2 < \alpha \leq \arg(1-ze^{-i\varphi}) \leq \beta < +\pi/2$, then by (1.1) (1), the hyperbolic disks: $\rho(z, a_n) \leq R_n$ $n \geq N$ (N: sufficiently large integer) are not contained in the fixed subsector of S. Therefore Corollary 2 is an immediate consequence of Corollary 1.

Proof of Theorem 2. Without any loss of generality, we can assume that $\varphi=0$. By Corollary 2, $\lim |z-1| \cdot \log |B(z)|=0$ as $z \to 1$ on the chords: $\arg(1-z)=\vartheta\pm\varepsilon$, ε being any positive constant such that $-\pi/2 < \vartheta - \varepsilon < \vartheta + \varepsilon < +\pi/2$. Hence, for any $\delta > 0$,

(3.2) $|B(z)| > \exp\{-\delta/(1-|z|)\}$

for arg $(1-z) = \vartheta \pm \varepsilon$, $|1-z| \leq \Delta(\delta)$, $\Delta(\delta)$ being a constant dependent upon δ . By simple computation,

[Vol. 41,

 $\begin{array}{c} (1-|z|)/|1-z| \ge 1/2 \cdot \min \{\cos (\vartheta + \varepsilon), \cos (\vartheta - \varepsilon)\} = \delta^*/2 \\ \text{for arg } (1-z) = \vartheta \pm \varepsilon, \ |1-z| \le \delta^*, \text{ so that} \\ (3.3) \qquad \mathcal{R}((1+z)/(1-z)) = (1-|z|^2)/|1-z|^2 > (\delta^*/2)^2 \cdot 1/(1-|z|). \\ \text{By } (3.2) \text{ and } (3.3) \end{array}$

$$|f(z)| > \exp\{1/(1-|z|) \cdot (\alpha \cdot (\delta^*/2)^2 - \delta)\}$$

for $\arg(1-z) = \vartheta \pm \varepsilon$, $|1-z| \leq \min(\varDelta(\delta), \delta^*)$. Taking δ so small that $\alpha(\delta^*/2)^2 > \delta$, w = f(z) tends to ∞ as $z \to 1$ along the chords : $\arg(1-z) = \vartheta \pm \varepsilon$. Since $f(a_n) = 0$ $n \geq 1$, by Gross-Iversen's theorem ([2] p. 5) the cluster set of w = f(z) at z = 1 inside the sector $S : |\arg(1-z) - \vartheta| \leq \varepsilon$ is the whole w-plane and f(z) takes every finite value, except perhaps one, infinitely many times in S. Since ε is arbitrary, the chord L: $\arg(1-z) = \vartheta$ is Julia-line, which proves Theorem 2.

Proof of Theorem 3. If $z \in D(e^{i\varphi}, \vartheta) \cap \mathcal{D}$, then by Lemma 3 (1), in which we put $\rho = \varepsilon^2$, $\Delta = 0$, we have

 $(3.4) \qquad \qquad \overline{\lim} \log |1/B(z)| \leq 4S + 4/\cos \vartheta \cdot \overline{\lim} S(\varepsilon)/\varepsilon^2 < +\infty$

as $z \mapsto e^{i\varphi}$ inside $D(e^{i\varphi}, \vartheta) \cap \mathcal{D}$.

If $z \in D(e^{i\varphi}, r_1, r_2) \cap \mathcal{D}$, then by lemma 3 (2), in which we put $\rho = \varepsilon/2$, $\Delta = 1/2$, we get

(3.5) $\overline{\lim} \log |1/B(z)| \leq 2Sr_2/(1-r_2) + 16(1-r_1)/r_1 \cdot \overline{\lim} S(\varepsilon)/\varepsilon^2 < +\infty$

as $z \to e^{i\varphi}$ inside $D(e^{i\varphi}, r_1, r_2) \cap \mathcal{D}$. By (3.4) and (3.5), Theorem 3 is completely established.

Proof of Theorem 4. If $z \in D(e^{i\varphi}, \vartheta) \cap \mathcal{D}$, then by Lemma 3 (1), in which we put $\rho = \varepsilon^{\alpha}$, $\Delta = 0$, we obtain

 $0 \leq \overline{\lim} \log |1/B(z)| \leq 0$, i.e. $\lim |B(z)| = 1$ as $z \to e^{i\varphi}$ inside $D(e^{i\varphi}, \vartheta) \cap \mathcal{D}$.

If $z \in D(e^{i\varphi}, r_1, r_2) \cap \mathcal{D}$, then by Lemma 3 (2), in which we put $\rho = \varepsilon^{\frac{\alpha}{2}}, \ \Delta = 0$, we get

 $0 \leq \overline{\lim} \log |1/B(z)| \leq 0$, i.e. $\lim |B(z)| = 1$

as $z \to e^{i\varphi}$ inside $D(e^{i\varphi}, r_1, r_2) \cap \mathcal{D}$. Thus our theorem is completely proved.

References

- [1] K. Knopp: Theory and Application of Infinite Series. London and Glasgow (1928).
- [2] K. Noshiro: Cluster Sets. Springer, Berlin (1960).