A Perturbation Theorem for Semi-groups 139. of Linear Operators

By Kôsaku Yosida

Department of Mathematics, University of Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., Oct. 12, 1965)

Let A be the infinitesimal generator of a contraction semi-group T_t of class (C₀) on the Banach space $X^{(1)}$ A is thus a closed linear operator with the domain D(A) and the range R(A) both in X such that: i) D(A) is dense in X, and ii) the resolvent $(\lambda I - A)^{-1}$ exists as a bounded linear operator on X into X satisfying the estimate $||\lambda(\lambda I - A)^{-1}|| \leq 1$ for all $\lambda > 0$. Let B likewise be the infinitesimal generator of another contraction semi-group of class (C_0) on X. Then the condition $D(B) \ge D(A)$ implies, by the closed graph theorem, that there exist positive constants a and b such that

 $||Bx|| \le a ||Ax|| + b ||x||$ for $x \in D(A)$.

As an important remark to Theorem 2 in H. F. Trotter [1] (Cf. T. Kato [1]), E. Nelson [1] proved that (A+B) with the domain D(A+B)=D(A) is the infinitesimal generator of a contraction semigroup of class (C₀) if we can take a < 1/2.

The purpose of the present note is to propose a sufficient condition in order that Nelson's hypothesis be satisfied. We shall prove

Theorem. Let $0 < \alpha < 1$. Let $\widehat{A}_{\alpha} = -(-A)^{\alpha}$ be the fractional power of A, and let us assume that $D(B) \ge D(\widehat{A}_{\alpha})$. Then (A+B)with the domain D(A+B)=D(A) is the infinitesimal generator of a contraction semi-group of class (C_0) on X.

Corollary. Assume, furthermore, that A generates a holomorphic semi-group, then (A+B) with the domain D(A+B)=D(A) also generates a holomorphic semi-group.

Remark 1.²⁾ The fractional power \widehat{A}_{α} is defined as the infinitesimal generator of the semi-group of class (C_0) :

$$(1) \qquad \qquad \widehat{T}_{t,\alpha}x = \int_0^\infty f_{t,\alpha}(s) T_s x \, ds \quad (t > 0, x \in X),$$

where

(2)
$$f_{t,\alpha}(s) = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} e^{zs-tz^{\alpha}} dz (\sigma > 0, t > 0, s \ge 0),$$

the branch of z^{α} being taken so that $Re(z^{\alpha}) > 0$ for Re(z) > 0. According to V. Balakrishnan [1], we have $D(A_{\alpha}) \geq D(A)$ and

(3)
$$(-A)^{\alpha}x = \frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} \lambda^{\alpha-1} (\lambda I - A)^{-1} (-Ax) d\lambda$$
 for $x \in D(A)$.

See, e.g., E, Hille-R. S. Phillips [1] or K. Yosida [1].
See, e.g., K. Yosida [1].

Remark 2.³⁾ A contraction semi-group T_t of class (C_0) is called a holomorphic semi-group if there exist positive numbers C_1 and C_2 $(<C_1)$ such that T_t admits holomorphic extension T_{λ} given by Taylor's expansion

$$(4) T_{\lambda}x = \sum_{n=0}^{\infty} (\lambda - t)^n T_t^{(n)} x/n! \text{ for } x \in X \text{ and } |\arg \lambda| < \tan^{-1}C_1$$

satisfying the estimate

 $||e^{-\lambda}T_{\lambda}|| \leq C_2 \text{ for } |\arg \lambda| < \tan^{-1}C_2,$

the existence of the strong derivatives $T_t^{(n)}x$ with respect to t being assumed for all $x \in X$. It is known that a contraction semi-group T_t of class (C_0) is a holomorphic semi-group if and only if, for fixed $\sigma_0 > 0$, we have the estimate

(6)
$$\overline{\lim_{|\tau|^{\uparrow}\infty}} || au(\sigma_0 + i au) I - A)^{-1} || < \infty$$

Proof of the Theorem. Being infinitesimal generators of contraction semi-groups of class (C_0) , A and B are both dissipative in the sense of G. Lumer and R. S. Phillips [1]. That is, if we take, for $x \in X$, a continuous linear functional $\varphi = \varphi_x$ defined on X such that

$$||\varphi_x||=1$$
 and $\langle x,\varphi_x\rangle=||x||,$

then we have

$$Re\langle Ax, \varphi_x \rangle \leq 0 \ (x \in D(A)) \ \text{and} \ Re\langle Bx, \varphi_x \rangle \leq 0 \ (x \in D(B)).$$

Thus $Re\langle (\lambda I - A - B)x, \varphi_x \rangle \geq \lambda || x ||$ and hence $|| (\lambda I - A - B)x || \geq \lambda || x ||$ for all $x \in D(A)$ and $\lambda > 0$. Therefore

(7) the inverse $(\lambda I - A - B)^{-1}$ exists with the estimate

 $||(\lambda I - A - B)^{-1}f|| \leq \lambda^{-1}||f|| \text{ for all } f \in R(\lambda I - A - B).$

Since D(A+B)=D(A) is dense in X, we have only to prove that $R(\lambda I-A-B)=X$ for some $\lambda>0$. For, then it is easy to show that $(\lambda I-A-B)^{-1}$ is everywhere defined on X with the estimate

 $||\lambda(\lambda\tau - A - B)^{-1}|| \leq 1$ for all $\lambda > 0$.

Now formula (3) may be written as

$$(-A)^{\alpha}x = \frac{\sin \pi \alpha}{\pi} \left\{ \int_{0}^{\delta} \lambda^{\alpha-1} [I - \lambda(\lambda I - A)^{-1}] x \, d\lambda + \int_{\delta}^{\infty} \lambda^{\alpha-2} \lambda(\lambda I - A)^{-1} (-Ax) d\lambda \right\}.$$

Hence, by ii), we obtain

(8) $||\hat{A}_{\alpha}x|| \leq a||Ax|| + b||x||$ for all $x \in D(A)$, where a can be taken arbitrarily small by taking b appropriately.⁴

 $(8)' \qquad \qquad \|\widehat{A}_{\alpha}x\| \leq \frac{\sin \pi \alpha}{\pi} \frac{2^{1-\alpha}}{\alpha(1-\alpha)} \|Ax\|^{\alpha} \|x\|^{1-\alpha} \text{ for all } x \in D(A) ,$

which is obtained by considering the minimum with respect to δ of $\frac{\sin \pi \alpha}{\pi} \left\{ ||x|| \int_{0}^{\delta} 2 \cdot \lambda^{\alpha-1} d\lambda + ||Ax|| \int_{\delta}^{\infty} \lambda^{\alpha-2} d\lambda \right\}.$

(5)

³⁾ See, e.g., K. Yosida [1].

⁴⁾ Mr. K. Masuda kindly called the author's attention that (8) may be replaced by a sharper one:

We also have, by $D(B) \ge D(\hat{A}_{\alpha})$ and the closed graph theorem, that there exists a positive constant c such that

(9) $||Bx|| \leq c(||\hat{A}_{\alpha}x||+||x||)$ for all $x \in D(\hat{A}_{\alpha})$. Thus, by (8) and (9),

(10) $||Bx|| \leq ac||Ax|| + c(b+1)||x||$ for all $x \in D(A)$.

Since $D(A) \leq D(\hat{A}_{\alpha}) \leq D(B)$, the operator $B(\lambda I - A)^{-1}$ with $\lambda > 0$ is everywhere defined on X and so, by (10) and the closed graph theorem, we obtain

(11) $||B(\lambda I-A)^{-1}|| \leq ac||A(\lambda I-A)^{-1}||+c(b+1)||(\lambda I-A)^{-1}||.$ Hence, by ii) and $A(\lambda I-A)^{-1} = \lambda(\lambda I-A)^{-1} - I$, we see that $||B(\lambda I-A)^{-1}|| < 1$ for $2ac + \lambda^{-1}c(b+1) < 1$. This proves that, for 2ac < 1 and for sufficiently large $\lambda > 0$, the inverse $(I-B(\lambda I-A)^{-1})^{-1} = \sum_{m=0}^{\infty} (B(\lambda I-A)^{-1})^m$ exists as a bounded linear operator on X into X so that $R((I-B(\lambda I-A)^{-1})=X.$ Therefore, by $R(\lambda I-A)=X$, we see that $R(\lambda I-A-B)=R((I-B(\lambda I-A)^{-1})(\lambda I-A))=X.$

Proof of the Corollary. Since A and (A+B) both generate contraction semi-groups of class (C_{\circ}) , we know that $((\sigma_{\circ}+i\tau)I-A-B)^{-1}$ and $((\sigma_{\circ}+i\tau)I-A)^{-1}$ both exist as bounded linear operators on X into X with the estimates

and
$$\| \sigma_0((\sigma_0+i\tau)I - A - B)^{-1} \| \leq 1, \| \sigma_0((\sigma_0+i\tau)I - A)^{-1} \| \leq 1 \\ \lim_{|\tau| \neq 0} |\tau| \| ((\sigma_0+i\tau)I - A)^{-1} \| < \infty.$$

Hence, as in the proof of Theorem, we prove that for 2ac < 1 and for sufficiently large $|\tau|$, the estimate

$$|| \tau((\sigma_0 + i\tau)I - A - B)^{-1} || \leq || (I - B((\sigma_0 + i\tau)I - A)^{-1})^{-1} || \cdot || \tau((\sigma_0 + i\tau)I - A)^{-1} ||$$

so that $|\tau| \cdot || ((\sigma_0 + i\tau)I - A - B)^{-1} ||$ is bounded as $|\tau| \uparrow \infty$. This proves that (A+B) generates a holomorphic semi-group.

References

- V. Balakrishnan [1]: Fractional powers of closed operators and the semi-group generated by them. Pacific J. Math., 10, 419-437 (1960).
- E. Hille and R. S. Phillips [1]: Functional Analysis and Semi-groups. Providence (1957).
- T. Kato [1]: Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Amer. Math. Soc., 7, 195-211 (1951).
- G. Lumer and R. S. Phillips [1]: Dissipative operators in a Banach space. Pacific J. Math., 11, 679-698 (1961).
- E. Nelson [1]: Feynman integrals and the Schrödinger equation. J. Math. Physics, 1, 332-343 (1964).
- E. F. Trotter [1]: On the product of semigroups of operators. Proc. Amer. Math. Soc., 10, 545-551 (1959).
- K. Yosida [1]: Functional Analysis. Springer (1965).