177. Axiom Systems of B-algebra

By Kiyoshi Iséki
(Comm. by Kinjirô Kunugi, m.J.A., Nov. 12, 1965)

In my previous note [1], I gave an algebraic formulations of the classical propositional calculus, and I defined four algebraic systems called $B, N B, B N$, and $N B N$-algebras. In this note, we shall give other characterizations of B-algebra.

Let $\langle X, 0, *, \sim\rangle$ be an abstract algebra containing 0 as an element of a set X, where $*$ is a binary operation and \sim is an unary operation on X. If $x * y=0$, then we shall denote it by $x \leqslant y$.

The axiom system of B-algebra is given by
L1. $x * y \leqslant x$,
L2 $(x * z) *(y * z) \leqslant(x * y) * z$,
$L 3 \quad x * y \leqslant(\sim y) *(\sim x)$,
$L 4 \quad 0 \leqslant x$.
If $x \leqslant y$ and $y \leqslant x$, then we define $x=y$. This axiom system is equivalent to axioms 1,2 , and

$$
\begin{array}{ll}
3^{\prime} & x=\sim(\sim x), \\
4^{\prime} & (\sim y) *(\sim x) \leqslant x * y,
\end{array}
$$

as already shown in [1]. Next we shall consider the following axiom system:
$H 1 \quad x * y \leqslant x$,
H2 $(x * y) * z \leqslant(x * z) * y$,
H3 $(x * y) *(x * z) \leqslant z * y$,
H $4 \quad x *(\sim y) \leqslant y$,
H $5 x *(x *(\sim y)) \leqslant x * y$,
H6 $0 \leqslant x$.
We first prove some lemmas from axioms $H 1 \sim H 6$.
By H 2 and the definition of equality, we have

$$
\begin{equation*}
(x * y) * z=(x * z) * y \tag{1}
\end{equation*}
$$

In $H 2$, put $x=y, y=y * x, z=y *(\sim x)$, then by $H 5$, we have

$$
\begin{equation*}
x *(x * y) \leqslant x *(\sim y) \tag{2}
\end{equation*}
$$

In (1), put $y=x, z=0$, then by $H 1$, we have

$$
(x * x) * 0 \leqslant(x * 0) * x=0,
$$

hence $x * x=0$.
(3)

$$
x * x=0 \text {, i.e. } x \leqslant x .
$$

Let $x * z=z * y=0$, then by $H 3$, we have $x * y=0$. This shows the following

$$
\begin{equation*}
x \leqslant y, y \leqslant z \text { imply } x \leqslant z \tag{4}
\end{equation*}
$$

By H5 and (3), we have
(5)

$$
x *(x *(\sim x))=0, \text { i.e. } x \leqslant x *(\sim x)
$$

By (2) and (3), we have
(6) $\quad(\sim x) *((\sim x) * x)=0$, i.e. $\sim x \leqslant(\sim x) * x$.

Applying $H 1$, from (5) and (6), we have
(7)

$$
x=x *(\sim x), \quad x=(\sim x) * x .
$$

In (2), put $x=x *(\sim(\sim x))$, then

$$
(x *(\sim(\sim x))) *((x *(\sim(\sim x))) * x) \leqslant(x *(\sim(\sim x))) *(\sim x)
$$

The right side is equal to 0 by $H 4$, and further the second term of the left side is 0 by $H 1$. Hence we have $x *(\sim(\sim x))=0$. Therefore

$$
\begin{equation*}
x \leqslant \sim(\sim x) \tag{8}
\end{equation*}
$$

Let us put $x=\sim(\sim x), y=\sim(\sim x), z=x *(\sim x)$ in $H 3$, then we have

$$
(\sim(\sim x) * x) *(\sim(\sim x) *(\sim(\sim x) *(\sim x))) \leqslant(\sim(\sim x) *(\sim x)) * x .
$$

Here $(\sim(\sim x) *(\sim x)) * x=0$ by $H 4$, and $(\sim(\sim x) *(\sim(\sim x) *(\sim x)))=0$ by (7), then we have

$$
\begin{equation*}
\sim(\sim x) \leqslant x . \tag{9}
\end{equation*}
$$

By (8) and (9), we have
(10)

$$
\sim(\sim x)=x
$$

By $H 3$, if $z \leqslant y$, i.e. $z * y=0$, then $x * y \leqslant x * z$, hence
(11) $x \leqslant y$ implies $z * y \leqslant z * x$.

By (3) and the commutative law (1), we have $(x * y) *(z * y) \leqslant x * z$. Suppose $x * z=0$, then $x * y \leqslant z * y$. Hence

In $H 2$, if we put $y=\sim y$ and use (10), then we have $x *(x * y) \leqslant$ $x *(\sim y)$. Next we substitute $x * y$ for x, and use $x * y \leqslant \sim y$ proved by $H 4$ and (10), then we have $(x * y) *((x * y) * y)=0$, and $x * y \leqslant$ $(x * y) * y \leqslant x * y$ by H 1 . Hence

$$
\begin{equation*}
(x * y) * y=x * y \tag{13}
\end{equation*}
$$

Axiom 3 and the commutative law (1) imply $(x * z) *(y * z) \leqslant x * y$. If we operate z from the right of formula above, by (12), we have

$$
((x * z) *(y * z)) * z \leqslant(x * y) * z .
$$

Applying the commutative law (1), we have

$$
((x * z) * z) *(y * z) \leqslant(x * y) * z
$$

Axiom $H 3$ and (12) imply

$$
((x * y) *(x * z)) * u \leqslant(z * y) * u
$$

Using the commutative law into the left side, then we have

$$
((x * y) * u) *(x * z) \leqslant(z * y) * u .
$$

Now we substitute $x * z$ for $x, y * z$ for $y,(x * z) * z$ for z, and $(x * y) * z$ for u, then we have

$$
\begin{gathered}
(((x * z) *(y * z)) *((x * y) * z)) *((x * z) *((x * z) * z)) \\
\quad \leqslant(((x * z) * z) *(y * z)) *((x * y) * z) .
\end{gathered}
$$

By the formula above, the right side is equal to 0 , and by (13), the second term of the left side is 0 , hence we have the following important

$$
\begin{equation*}
(x * z) *(y * z) \leqslant(x * y) * z \tag{14}
\end{equation*}
$$

We substitute $u * x$ for x in (14), then

$$
((u * x) * z) *(y * z) \leqslant((u * x) * y) * z .
$$

By (2), we have

$$
((u * z) * x) *(y * z) \leqslant((u * y) * x) * z \leqslant(u * y) * x .
$$

Hence

$$
\begin{equation*}
((u * z) * x) *(y * z) \leqslant(u * y) * x . \tag{15}
\end{equation*}
$$

By axiom 3 and (11), we have

$$
u *(y * x) \leqslant u *((z * x) *(z * y)) .
$$

Next we substitute $(z *(z * y)) *(z *(z * x))$ for u, then

$$
\begin{aligned}
& ((z *(z * y)) *(z *(z * x))) *(y * x) \\
& \quad \leqslant((z *(z * y)) *(z *(z * x))) *((z * x) *(z * y))
\end{aligned}
$$

The right side is equal to 0 by $H 2$, hence $(z *(z * y)) *(z *(z * x)) \leqslant y * x$. By the commutative law,

$$
(z *(z * y)) *(y * x) \leqslant z *(z * x)
$$

Put $z=\sim x, y=x$ by $\sim x *((\sim x) * x)=0$. we have

$$
\begin{equation*}
((\sim x) *((\sim x) * y)) *(y * x)=0 \tag{16}
\end{equation*}
$$

In (15), put $u=\sim x, z=\sim y, x=y * x, y=\sim x * y$, then

$$
\begin{gathered}
(((\sim x) *(\sim y)) *(y * x)) *(((\sim x) * y) *(\sim y)) \\
\leqslant((\sim x) *((\sim x) * y)) *(y * x) .
\end{gathered}
$$

By (16), the right side is 0 , and $(\sim x) * y \leqslant \sim y$, we have

$$
\begin{equation*}
(\sim x) *(\sim y)=y * x \tag{17}
\end{equation*}
$$

As shown in my note [1], (10) and (17) imply

$$
\begin{equation*}
x * y=(\sim y) *(\sim x) . \tag{18}
\end{equation*}
$$

Therefore our axiom system defines a B-algebra.
The ideas of some deductions are stated in the case of the proofs of $(H) \Rightarrow(F),(R)$, and $\left(L_{3}\right)$ (see [2]).

In my note [1], any B-algebra (axioms $L 1 \sim L 4$) is $N B, B N$, $N B N$-algebras and we proved that $\sim(\sim x)=x$ holds in the B-algebra.

Let $\langle X, 0, *, \sim\rangle$ be a B-algebra satisfying $L 1 \sim L 4$. Then we shall prove that $H 1 \sim H 6$ hold in the B-algebra.

If we substitute $(z * x) *(y * x)$ for $x,(z * y) * x$ for y and $z * y$ for z in axiom $L 2$, then we have

$$
\begin{aligned}
& (((z * x) *(y * x)) *(z * y)) *(((z * y) * x) *(z * y)) \\
& \quad \leqslant(((z * x) *(y * x)) *((z * y) * x)) *(z * y) \\
& \quad=0 *(z * y)=0
\end{aligned}
$$

by $L 2$ and $L 4$. Further, by $L 1$ we have $((z * y) * x) *(z * y)=0$. Therefore,

$$
\begin{equation*}
(z * x) *(y * x) \leqslant z * y \tag{a}
\end{equation*}
$$

By the proposition 4 in [1], we have

$$
(z * x) *(z * y) \leqslant y * x
$$

which shows $H 3$. Next we shall prove $H 2$ from $L 1, L 2$, and $L 4$. $y * x \leqslant y$ implies

$$
(z * x) * y \leqslant(z * x) *(y * x)
$$

(see the proposition 5 in [1]). In the formula (a), put $z=(x * y) * z$, $x=(x * z) * y$, and $y=(x * y) *(z * y)$, then

$$
\begin{aligned}
(((x * y) * z) & *((x * z) * y)) *(((x * y) *(z * y)) *((x * z) * y)) \\
& \leqslant((x * y) * z) *((x * y) *(z * y)) .
\end{aligned}
$$

The right side is 0 by the formula above, and the second term of the left side is 0 by $L 2$, hence we have $H 2$:

$$
(x * y) * z=(x * z) * y
$$

We proved that $L 1 \sim L 4$ imply $H 4$ (see proposition 8 in [1]). Now we shall prove that $H 5$ is deduced from $L 1 \sim L 4$. Since the algebra is $B N, N B, N B N$-algebras, it is sufficient to verify

$$
\sim(x * y) *(\sim x) \leqslant y *(\sim x)
$$

By L2, we have

$$
\begin{aligned}
&(\sim(x * y) *(\sim x)) *(y *(\sim x)) \\
& \leqslant(\sim(x * y) * y) *(\sim x) \\
&=((\sim y) *(x * y)) *(\sim x) \\
&=((\sim y) *(\sim x)) *(x * y) \\
&=(x * y) *(x * y)=0 .
\end{aligned}
$$

Therefore we complete the proof of $H 4$. Hence we have the following

Theorem. Any B-algebra is characterized by the axiom system $H 1 \sim H 6$.

References

[1] K. Iséki: Algebraic formulation of propositional calculi. Proc. Japan Acad., 41, 803-807 (1965).
[2] K. Iséki and S. Tanaka: On axiom systems of propositional calculi. X. Proc. Japan Acad., 41, 801-802 (1965).

